\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\) . CMR: \(\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

Ta có

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}=\frac{b^2-ab+ac-c^2}{\left(a-c\right)\left(b-a\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

Tương tự

\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-bc+ab-a^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

\(\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+bc-b^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=\frac{b^2-ab+ac-c^2+c^2-bc+ab-a^2+a^2-ac+bc-b^2}{\left(a-c\right)\left(b-a\right)\left(a-b\right)}\)

=0 ( ĐPCM)

AH
Akai Haruma
Giáo viên
29 tháng 5 2020

Lời giải:

Nên bổ sung thêm điều kiện $a,b,c$ đôi một phân biệt. Đặt biểu thức cần chứng minh bằng $0$ là $P$

Ta có:

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow \left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)=0\)

\(\Leftrightarrow \frac{a}{(b-c)^2}+\frac{b}{(c-a)^2}+\frac{c}{(a-b)^2}+\frac{b}{(b-c)(c-a)}+\frac{c}{(b-c)(a-b)}+\frac{a}{(c-a)(b-c)}+\frac{c}{(c-a)(a-b)}+\frac{a}{(a-b)(b-c)}+\frac{b}{(a-b)(c-a)}=0\)

\(\Leftrightarrow P+\frac{b(a-b)+c(c-a)+a(a-b)+c(b-c)+a(c-a)+b(b-c)}{(a-b)(b-c)(c-a)}=0\)

\(\Leftrightarrow P+\frac{0}{(a-b)(b-c)(c-a)}=0\Rightarrow P=0\) (đpcm)

16 tháng 8 2017

Áp dụng bđt Cauchy Schwarz dưới dạng Engel ta có :

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(c+b\right)^2}{a}+\frac{\left(a+c\right)^2}{b}\ge\frac{\left(a+b+c+b+c+a\right)^2}{a+b+c}\)

\(=\frac{\left(2a+2b+2c\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

23 tháng 12 2015

nguyễn quốc khánh sai r.không đủ tính thuyết phuc chung mình như vậy cũng không thể x+y+z=0=>x=y=z d