Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2013\)
<=>\(\frac{\left(b-a\right)-\left(c-a\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(c-b\right)-\left(a-b\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(a-c\right)-\left(b-c\right)}{\left(c-a\right)\left(c-b\right)}=2013\)
<=>\(\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}=2013\)
<=>\(2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)
<=>\(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}=\frac{2013}{2}=1006,5\)
Ok , mình sẽ làm !
Ta có :
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b}{c}-1+1=\frac{b+c}{a}-1+1=\frac{c+a}{b}-1+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\left(1\right)\)
+) Trường hợp 1 : \(a+b+c=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
Ta có :
\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{-a}{a}.\frac{-c}{c}.\frac{-b}{b}\)
\(\Leftrightarrow P=-1.\left(-1\right).\left(-1\right)=-1\)
+) Trường hợp 2 : \(a+b+c\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau cho ( 1 ) , ta có :
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\hept{\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}}\)
Ta lại có :
\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
\(\Leftrightarrow P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{c+b}{b}\)
\(\Leftrightarrow P=2.2.2=8\)
Vậy....................
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{c+a+b}=2\)(T/C...)
Xét a+b+c=0
\(\Rightarrow a+b=-c,c+b=-a,a+c=-b\)
\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)
Xét a+b+c\(\ne0\)
\(\Rightarrow a+b=2c,b+c=2a,c+a=2b\)
\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{a+c}{a}=\frac{2c}{b}\cdot\frac{2a}{c}\cdot\frac{2b}{a}=8\)
Giải:
+) Xét a + b + c = 0
\(\Rightarrow-a=b+c\)
\(\Rightarrow-b=a+c\)
\(\Rightarrow-c=a+b\)
Ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{-c}{c}=\frac{-a}{a}=\frac{-b}{b}=-1\)
Lại có: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=-1\)
+) Xét \(a+b+c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Ta có:
\(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=2.2.2=8\)
Vậy M = -1 hoặc M = 8
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (1)
Xét 2 trường hợp:
- TH1: a + b + c = 0 \(\Rightarrow\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}\)
\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
\(P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}\)
\(P=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)
- TH2: a + b + c \(\ne\) 0
Từ (1) \(\Rightarrow\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=1\)
\(\Rightarrow\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}\)\(\Rightarrow\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}\)
\(P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=8\)
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
=\(\frac{a+b-c+b+c-a+c+a-b}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1
=>\(\frac{a+b-c}{c}=1\)
a+b-c=c
2c=a+b
=>\(\frac{b+c-a}{a}=1\)
b+c-a=a
2a=b+c
=>\(\frac{c+a-b}{b}=1\)
c+a-b=b
=>c+a=2b
ta co \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{c+b}{b}\right)\)
=\(\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
Theo tính chất dãy tỉ số bằng nhau ta có : a+b-c/c = b+c-a/a = c+a-b/b = a+b-c+b+c-a+c+a-b/a+b+c = a+b+c/a+b+c = 1
Ta có : a+b-c/c=1 => a+b-c=c => a+b+c=3c (1)
Ta có : b+c-a/a=1 => b+c-a=a => a+b+c=3a (2)
Ta có : c+a-b/b=1 => c+a-b=b => a+b+c=3b (3)
Từ (1);(2);(3) => 3c=3a=3b => a=b=c => b/a=1 ; a/c=1 ; c/b=1
=> B= (1+b/a)(1+a/c)(1+c/b) = (1+1)(1+1)(1+1) = 2.2.2 = 8
a) Sử dụng phương pháp dãy tỉ số bằng nhau
=> \(\frac{a+b-c}{c}\)= \(\frac{b+c-a}{a}\)=\(\frac{c+a-b}{b}\)=\(\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1
=>a+b=2c , b+c=2a , c+a=2b (*)
b)P=(1+\(\frac{b}{a}\))(1+\(\frac{c}{b}\))(1+\(\frac{a}{c}\))=1+ (\(\frac{b}{a}\)+\(\frac{c}{b}+\frac{a}{c}\)) + \(\frac{abc}{abc}\)+(\(\frac{c}{a}+\frac{a}{b}+\frac{b}{c}\)) (Tách ra )
=\(\frac{\left(b+c\right)bc+\left(c+a\right)ca+\left(a+b\right)ab}{abc}\)+ 2 = \(\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{abc}-\frac{3abc}{abc}\)+ 2
=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc}{abc}-1\)
Từ (*) =>P=\(\frac{8abc+abc}{abc}\)- 1 =8