Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}.\)
+ Xét \(a+b+c\ne0.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=\frac{1}{1}=1.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{b}=1\Rightarrow a=1.b=b\\\frac{b}{c}=1\Rightarrow b=1.c=c\\\frac{c}{a}=1\Rightarrow c=1.a=a\end{matrix}\right.\)
\(\Rightarrow a=b=c\left(đpcm\right).\)
+ Xét \(a+b+c=0.\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\left(đpcm\right).\)
Chúc bạn học tốt!
Ta có:
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}.\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\left(đpcm\right).\)
Chúc bạn học tốt!
Sửa lại đề là \(D=\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}\le\frac{3}{4}.\)
Chúc bạn học tốt!
\(\frac{x+y}{z-y}=\frac{z+x}{z-x}\Leftrightarrow\frac{x+y}{x+z}=\frac{z-y}{z-x}=\frac{x}{z}=\frac{y}{x}\)
\(\Rightarrow x^2=yz\left(đpcm\right)\)
Ta có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{\left(12x-12x\right)-\left(8y-8y\right)+\left(6z-6z\right)}{29}=0.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{12x-8y}{16}=0\Rightarrow12x-8y=0\Rightarrow12x=8y\\\frac{6z-12x}{9}=0\Rightarrow6z-12x=0\Rightarrow6z=12x\\\frac{8y-6z}{4}=0\Rightarrow8y-6z=0\Rightarrow8y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\\\frac{y}{3}=\frac{z}{4}\end{matrix}\right.\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right).\)
Chúc bạn học tốt!