Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thiếu đề
b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)
=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)
Vậy ...
Sửa lại xíu :
\(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)
b, \(2x=3y=5z\Rightarrow\frac{30x}{15}=\frac{30y}{10}=\frac{30z}{6}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{2x}{30}=\frac{3z}{18}=\frac{2x-3z}{30-18}=\frac{60}{12}=5\)
\(\frac{x}{15}=5\rightarrow x=75\)
\(\frac{y}{10}=5\rightarrow y=50\)
\(\frac{z}{6}=5\rightarrow z=30\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
=> \(\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{4}=9\\\frac{z}{-4}=9\end{cases}}\) => \(\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
Vậy ...
a, ÁP DỤNG DÃY TỈ SỐ BĂNG NHAU TA CÓ
\(\frac{x}{2}=\frac{y}{3}=\frac{x}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
\(\Rightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
Đặt \(\frac{2x}{3}=\frac{3y}{5}=\frac{5z}{6}=k\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3k}{2}\\y=\frac{5k}{3}\\z=\frac{6k}{5}\end{cases}}\)
\(\Rightarrow3x-4y+3z=\frac{3.3k}{2}-\frac{4.5k}{3}+\frac{3.6k}{5}=-59\)
\(\Rightarrow\frac{9k}{2}-\frac{20k}{3}+\frac{18k}{5}=-59\)
\(\Rightarrow k.\left(\frac{9}{2}-\frac{20}{3}+\frac{18}{5}\right)=-59\)
\(\Rightarrow k.\frac{43}{30}=-59\)
=> k = -1770/43
Số lớn khiếp , còn lại tự nhân lên rồi tìm x,y,z nha
ta có :\(\frac{2x}{5}=\frac{4y}{3}=\frac{3z}{10}=\frac{12x}{30}=\frac{12y}{9}=\frac{12z}{40}\)và x+y+z=39,5=>12(x+y+z)=39,5.12
12x+12y+12z=474
áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{12x}{30}=\frac{12y}{9}=\frac{12z}{40}=\frac{12x+12y+12z}{30+9+40}=\frac{474}{79}=6\)
suy ra :
\(\frac{2x}{5}=6\Rightarrow2x=30\Rightarrow x=15\)
\(\frac{4y}{3}=6\Rightarrow4y=18\Rightarrow y=4,5\)
\(\frac{3z}{10}=6\Rightarrow3z=60\Rightarrow z=20\)