Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{-x-y}{\left(x+y+z\right)z}\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{\left(x+y+z\right)z}\right)=0\)
\(+,x+y=0\Rightarrow x=-y\Rightarrow\text{đpcm}\)
\(+,\frac{1}{xy}+\frac{1}{\left(x+y+z\right)z}=0\Leftrightarrow\frac{xy+xz+yz+z^2}{xyz\left(x+y+z\right)}=0\Leftrightarrow\frac{x\left(y+z\right)+z\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\frac{\left(y+z\right)^2}{xyz\left(x+y+z\right)}=0\Rightarrow y+z=0\Rightarrow z=-y\Rightarrow\text{đpcm}\)
\(\text{Vậy ta có điều phải chứng minh }\)
nhầm mk giải lại
vì x;y;z là 3 số dương \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{9}{x+y+z}\)(bđt cauchy schwarz dạng engel)
dấu = xảy ra khi x=y=z=2
mà x+y+z<=6\(\Rightarrow\frac{9}{x+y+z}>=\frac{9}{6}=\frac{3}{2}\)\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}.=\frac{3}{2}\)
vì x;y;z là 3 số dương \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\)(bđt caucht schwarz dạng engel)
dấu = xảy ra khi \(x=y=z=\frac{6}{3}=2\)
vậy \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{3}{2}\)
Từ x+y+z=3 ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\frac{\Leftrightarrow xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
Nhân chéo ta có:
\(\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow x^2y+xyz+x^2z+y^2x+y^2z+xyz+xyz+z^2y+z^2x=xyz\)
\(\Leftrightarrow x^2y+x^2z+y^2z+y^2x+z^2x+z^2y+2xyz=0\)
\(\Leftrightarrow\left(x^2y+x^2z+y^2x+xyz\right)+\left(y^2z+z^2x+z^2y+xyz\right)=0\)
\(\Leftrightarrow x\left(xy+xz+y^2+yz\right)+z\left(xy+xz+y^2+yz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left[\left(xy+y^2\right)+\left(xz+yz\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)=0\)
Suy ra x+z=0 hoặc y+z=0 hoặc x+y=0
Với x+z=0 ta đc y=3
Với y+z=0 ta đc x=3
Với x+y=0 ta đc z=3
Từ đó suy ra đccm
1) VT= \(\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xyz}{xyz+z+zx}\)
\(=\frac{1}{1+x+xy}+\frac{xy}{1+x+xy}+\frac{xyz}{z\left(x+xy+1\right)}\)
\(=\frac{1}{1+x+xy}+\frac{x}{1+x+xy}+\frac{xy}{1+x+xy}\)
\(=\frac{1+x+xy}{1+x+xy}=1\)
Bài 2 giả thiết trên tử làm mell gì có bình phương, nếu có thì tính làm gì nữa :D, kết quả là 2016(x+y+z)