\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\).Tìm GTLN của P =
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 5 2019

\(1=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\sqrt{3}\)

\(P=\sum\frac{1}{\sqrt{\left(2x+y\right)^2+\left(x-y\right)^2}}\le\sum\frac{1}{\sqrt{\left(2x+y\right)^2}}=\sum\frac{1}{2x+y}\)

\(P\le\sum\left(\frac{1}{x+x+y}\right)\le\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{\sqrt{3}}{3}\)

\(\Rightarrow P_{max}=\frac{\sqrt{3}}{3}\) khi \(x=y=z=\sqrt{3}\)

24 tháng 4 2019

Ta có 5x2+2xy+2y2=(2x+y)2+(x-y)2>=(2x+y)2

Khi đó P<=\(\frac{1}{2x+y}+\frac{1}{2y+z}+\frac{1}{2z+x}\)

Lại có \(\frac{1}{2x+y}=\frac{1}{x+x+y}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}\right)\)

  1.  

     Tương tự \(\frac{1}{2y+z}\le\frac{1}{9}\left(\frac{1}{y}+\frac{1}{z}+\frac{1}{y}\right)\)

                      \(\frac{1}{2z+x}\le\frac{1}{9}\left(\frac{1}{z}+\frac{1}{x}+\frac{1}{z}\right)\)

Khi đó P<=\(\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{1}{3}\sqrt{3\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}\le\frac{\sqrt{3}}{3}\)

Dấu bằng xảy ra khi x=y=z=\(\frac{\sqrt{3}}{3}\)

HAY

24 tháng 4 2019

bài làm láo à ? sau 1 hồi trình bày thì dấu = khi \(x=y=z=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}\) ??

29 tháng 4 2020

Ta có: 

\(15\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)=10\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+2014\)

\(\le10\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2014\)

=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\le\frac{2014}{5}\)

\(P=\frac{1}{\sqrt{5x^2+2xy+2yz}}+\frac{1}{\sqrt{5y^2+2yz+2zx}}+\frac{1}{\sqrt{5z^2+2zx+2xy}}\)

=> \(P\sqrt{\frac{2014}{135}}=\frac{1}{\sqrt{5x^2+2xy+2yz}.\sqrt{\frac{135}{2014}}}\)

\(+\frac{1}{\sqrt{5y^2+2yz+2zx}\sqrt{\frac{135}{2014}}}+\frac{1}{\sqrt{\frac{135}{2014}}\sqrt{5z^2+2zx+2xy}}\)

\(\le\frac{1}{2}\left(\frac{1}{5x^2+2xy+2yz}+\frac{2014}{135}+\frac{1}{5y^2+2yz+2zx}+\frac{2024}{135}+\frac{1}{5z^2+2yz+2zx}+\frac{2014}{135}\right)\)

\(\le\frac{1}{2}\left[\frac{1}{81}\left(\frac{5}{x^2}+\frac{2}{xy}+\frac{2}{yz}\right)+\frac{1}{81}\left(\frac{5}{y^2}+\frac{2}{yz}+\frac{2}{zx}\right)+\frac{1}{81}\left(\frac{5}{z^2}+\frac{2}{zx}+\frac{2}{xy}\right)+\frac{2014}{45}\right]\)

\(=\frac{5}{162}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+\frac{2}{81}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+\frac{1007}{45}\)

\(\le\frac{5}{162}.\frac{2014}{5}+\frac{2}{81}.\frac{2014}{5}+\frac{1007}{45}=\frac{2014}{45}\)

=> \(P\le\frac{2014}{45}:\sqrt{\frac{2014}{135}}=3\sqrt{\frac{2014}{135}}\)

Dấu "=" xảy ra <=> x = y = z = \(\sqrt{\frac{15}{2014}}\)

13 tháng 1 2018

cm bđt phụ \(5x^2+6xy+5y^2\ge4\left(x+y\right)^2\)nhé

12 tháng 7 2020

Ta có: \(\sqrt{5x^2+6xy+5y^2}=\sqrt{4\left(x+y\right)^2+\left(x-y\right)^2}\ge\sqrt{4\left(x+y\right)^2}=2\left(x+y\right)\)

\(\Rightarrow\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}\ge\frac{2\left(x+y\right)}{x+y+2z}\)(1)

Tương tự, ta có: \(\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}\ge\frac{2\left(y+z\right)}{y+z+2x}\)(2); \(\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\ge\frac{2\left(z+x\right)}{z+x+2y}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)

Đặt \(x+y=a;y+z=b;z+x=c\)thì \(\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\)\(=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Nhưng ta có BĐT Nesbitt quen thuộc sau: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy: 

(Bài này mình đã làm nhiều rồi nha nên ngại đánh lại, đây là bất đẳng thức có rất nhiều cách chứng minh nhưng mình nghĩ dồn biến là cách hay và đẹp nhất nha! Có thể tham khảo nhiều cách khác trên mạng, vô thống kê hỏi đáp của mình xem ảnh)

Như vậy: \(\frac{\sqrt{5x^2+6xy+5y^2}}{x+y+2z}+\frac{\sqrt{5y^2+6yz+5z^2}}{y+z+2x}+\frac{\sqrt{5z^2+6zx+5x^2}}{z+x+2y}\)\(\ge2\left[\frac{x+y}{\left(y+z\right)+\left(z+x\right)}+\frac{y+z}{\left(z+x\right)+\left(x+y\right)}+\frac{z+x}{\left(x+y\right)+\left(y+z\right)}\right]\)\(\ge2.\frac{3}{2}=3\)

Đẳng thức xảy ra khi x = y = z

31 tháng 7 2019

Ta có \(\frac{\sqrt{x^2+2y^2}}{xy}=\sqrt{\frac{1}{y^2}+\frac{2}{x^2}}\)

Áp dụng BĐT Buniacoxki ta có 

\(\sqrt{\left(\frac{1}{y^2}+\frac{2}{x^2}\right)\left(1+2\right)}\ge\sqrt{\left(\frac{1}{y}+\frac{2}{x}\right)^2}=\frac{1}{y}+\frac{2}{x}\)

=> \(\sqrt{3}A\ge3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3\)

=> \(A\ge\sqrt{3}\)

\(MinA=\sqrt{3}\)khi x=y=z=3

19 tháng 11 2015

gọi P là cái 1/x+1/y+1/z nha

1) (1/x+1/y+1/z)^2 = 1/x^2 + 1/y^2 + 1/z^2 + 2/(xy) + 2/(yz) + 2/(zx) 
---> 3 = P + 2(x+y+z)/(xyz) = P + 2 ---> P = 1 

19 tháng 11 2015

bạn giải đi rùi mình tick cho

3 tháng 10 2017

mình làm ra rồi khỏi cần giúp nữa

31 tháng 5 2017

ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)

Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)

\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla