Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính \(P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}\)
P= abc(\(\frac{1}{^{a^3}}\)+\(\frac{1}{b^3}\)+\(\frac{1}{c^3}\)) = abc[(\(\frac{1}{a}\)+\(\frac{1}{b}\))3+\(\frac{1}{c^3}\)-\(\frac{3}{a^2b}\)-\(\frac{3}{ab^2}\)]=abc[(\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\))(....)- \(\frac{3}{a^2b}\)-\(\frac{3}{ab^2}\)]
=abc.(- \(\frac{3}{a^2b}\)-\(\frac{3}{ab^2}\)) =-3(\(\frac{c}{a}\)+\(\frac{c}{b}\)) = -3c(\(\frac{1}{a}\)+\(\frac{1}{b}\)) = -3c.\(\frac{-1}{c}\)=3
P = 3
Đầu tiên,bạn cần chứng minh x + y + z = 0 thì x3 + y3 + z3 = 3xyz ( Bạn ko biết c/m thì hỏi nhé)
Thay\(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3.\frac{1}{a}.\frac{1}{b}.\frac{1}{c}=\frac{3}{abc}\)
\(\Rightarrow M=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}=abc\left(\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{b^3}\right)=abc.\frac{3}{abc}=3\)
\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)
Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)
\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)
Áp dụng bdt Cauchy ta có :
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)--\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=3\)
Chúc bạn học tốt !!!
\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)
Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)
\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)
Áp dụng BĐT Cauchy ta có :
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=3\)
Chúc bạn học tốt !!!
Áp dụng : x + y + z = 0 suy ra x3 + y3 + z3 = 3xyz
1/a + 1/2b + 1/3c = 0 = >... rồi biến đổi nhé
Theo Svac - xơ có :
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\)
Khi đó \(P\ge\frac{9}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\)
\(=\left(\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{1}{a^2+b^2+c^2}\right)+\frac{7}{ab+bc+ca}\)
\(\ge\frac{9}{a^2+b^2+c^2+2.\left(ab+bc+ca\right)}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}\)
\(=\frac{9}{\left(a+b+c\right)^2}+\frac{21}{\left(a+b+c\right)^2}=\frac{30}{\left(a+b+c\right)^2}=\frac{10}{3}\)
Dấu "=: xảy ra khi \(a=b=c=1\)
Vậy \(P_{min}=\frac{10}{3}\) khi \(a=b=c=1\)
\(P=\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3} +\frac{abc}{b^3}\)
\(=abc.\left(\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{b^3}\right)\)Mà nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
thì \(\frac{1}{c^3}+\frac{1}{a^3}+\frac{1}{b^3}=\frac{3}{abc}\)\(\Rightarrow P=abc.\frac{3}{abc}=3\)
Ta có :
\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(=\frac{abc.3}{\left(abc\right)}=3\)
Xin lỗi lúc này do thày nhìn nhầm nên nghĩ câu 2 sai đề. Để đền bù thiệt hại, xin giải lại cả hai bài cho em
Cả hai bài toán này đều sử dụng bất đẳng thức Cauchy-Schwartz. Em xem link dưới đây để biết rõ hơn: http://olm.vn/hoi-dap/question/174274.html
Câu 1. Theo bất đẳng thức Cauchy-Schwartz ta có
\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}=\frac{1}{2a+\frac{bc}{a}}+\frac{1}{2b+\frac{ca}{b}}+\frac{1}{2c+\frac{ab}{c}}\)
\(\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)}=\frac{9}{2\left(a+b+c\right)+\frac{a^2b^2+b^2c^2+c^2a^2}{abc}}=\frac{9abc}{2abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)}\)
\(=\frac{9abc}{\left(ab+bc+ca\right)^2}=\frac{9abc}{9}=abc.\)
Vậy ta có điều phải chứng minh.
Câu 2. Tiếp tục sử dụng bất đẳng thức Cauchy-Schwartz
\(\frac{8}{2a+b}=\frac{4}{a+\frac{b}{2}}\le\frac{1}{a}+\frac{1}{\frac{b}{2}}=\frac{1}{a}+\frac{2}{b}.\)
Tương tự, \(\frac{48}{3b+2c}=\frac{16}{b+\frac{2c}{3}}\le4\left(\frac{1}{b}+\frac{1}{\frac{2c}{3}}\right)=\frac{4}{b}+\frac{6}{c},\) và \(\frac{12}{c+3a}=\frac{4}{\frac{c}{3}+a}\le\frac{1}{\frac{c}{3}}+\frac{1}{a}=\frac{3}{c}+\frac{1}{a}.\)
Cộng ba bất đẳng thức lại ta được
\(\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\le\left(\frac{1}{a}+\frac{2}{b}\right)+\left(\frac{4}{b}+\frac{6}{c}\right)+\left(\frac{3}{c}+\frac{1}{a}\right)=\frac{2}{a}+\frac{6}{b}+\frac{9}{c}.\) (ĐPCM).