Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Đặt c1=a1−b1;c2=a2−b2;...;c5=a5−b5
Xét tổng c1+c2+c3+...+c5 ta có:
c1+c2+c3+...+c5
=(a1−b1)+(a2−b2)+...+(a5−b5)
=0
⇒c1;c2;c3;c4;c5 phải có một số chẵn
⇒c1.c2.c3.c4.c5⋮2
Vậy (a1−b1)(a2−b2)(a3−b3)...(a5−b5)⋮2 (Đpcm)
Phần a:Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a1}{a2}=\frac{a2}{a3}=...=\frac{a8}{a9}=\frac{a9}{a1}=\frac{a1+a2+...+a9}{a2+a3+...+a1}=1\)
=>Tử số = mẫu số.
Phần b:Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c+a-b+c}{a+b-c+a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2a+2c}{2a-2c}=\frac{a+c}{a-c}=\frac{2b}{2b}=1\)
=>a+c=a-c
<=>2c=0
<=>c=0.
Đặt c1=a1−b1;c2=a2−b2;...;c5=a5−b5c1=a1−b1;c2=a2−b2;...;c5=a5−b5
Xét tổng c1+c2+c3+...+c5c1+c2+c3+...+c5 ta có:
c1+c2+c3+...+c5c1+c2+c3+...+c5
=(a1−b1)+(a2−b2)+...+(a5−b5)=(a1−b1)+(a2−b2)+...+(a5−b5)
=0=0
⇒c1;c2;c3;c4;c5⇒c1;c2;c3;c4;c5 phải có một số chẵn
⇒c1.c2.c3.c4.c5⋮2⇒c1.c2.c3.c4.c5⋮2
Vậy (a1−b1)(a2−b2)(a3−b3)...(a5−b5)⋮2(a1−b1)(a2−b2)(a3−b3)...(a5−b5)⋮2 (Đpcm)
Áp dụng TCCDTSBN, ta có :
\(\frac{a1}{a2}=\frac{a2}{a3}=...=\frac{a9}{a1}=\frac{a1+a2+...+a9}{a2+a3+...+a1}=1\)
=> a1/a2 = 1 => a1 = a2
....
a9/a1 = 1 => a9 = a1
Từ tất cả điều trên => đpcm
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_9}{a_1}=\frac{a_1+a_2+...+a_9}{a_2+a_3+...+a_1}=1\)
Ta có: \(\frac{a_1}{a_2}=1\Rightarrow a_1=a_2\) (1)
\(\frac{a_2}{a_3}=1\Rightarrow a_2=a_3\) (2)
..........
\(\frac{a_9}{a_1}=1\Rightarrow a_9=a_1\) (9)
Từ (1),(2),...(9) suy ra a1 = a2 = a3 = .... = a9 (đpcm)
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\)
\(=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)\(=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{45}\)\(=\frac{90-45}{45}=1\)
Do dó, suy ra:\(\frac{a_1-1}{9}=1\Rightarrow a_1=10\)
\(\frac{a_2-2}{8}=1\Rightarrow a_2=10\)
\(...\)
\(\frac{a_9-9}{1}=1\Rightarrow a_9=10\)
Vậy \(a_1=a_2=...=a_9=10\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=\frac{a_3-3}{7}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+a_3+...+a_9-9}{9+8+7+...+1}=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{45}=\frac{90-45}{45}=1\)
\(\Rightarrow a_1=1+9=10\)
\(\Rightarrow a_2=8+2=10\)
\(\Rightarrow a_3=7+3=10\)
...
\(\Rightarrow a_9=1+9=10\)
Vậy \(a_1=a_2=a_3=...=a_9=10\)
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\)
Áp dụng dãy tỉ số bằng nhau:
\(\Rightarrow\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-1}{1}=\frac{a_1+a_2+...+a_9-\left(1+2+3+...+9\right)}{9+8+7+...+1}=\frac{90-45}{45}=1\)
\(\Rightarrow a_1-1=9\)
\(a_2-2=8\)
\(a_3-3=7\)
...................
\(a_9-9=1\)
Vậy \(a_1=a_2=a_3=a_4=a_5=a_{ }_6=a_7=a_8=a_9=10\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=......\dfrac{a_9}{a_1}=\dfrac{a_1+a_2+....+a_9}{a_2+a_3+.....+a_1}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a_1}{a_2}=1\Rightarrow a_1=a_2\\\dfrac{a_2}{a_3}=1\Rightarrow a_2=a_3\\\dfrac{a_9}{a_1}=1\Rightarrow a_9=a_1\end{matrix}\right.\)
\(\Rightarrow a_1=a_2=....a_9\)
Vậy ......
Chúc bạn học tốt!