K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2015

Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:

Diễn đàn Toán học

Diễn Đàn MathScope

.......

Bài 1.

+TH1: Đa thức có bậc là 0

\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)

Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)

Vậy \(f\left(x\right)=0\forall x\in R\)

+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.

Giả sử đa thức có bậc n.

Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)

Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)

Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.

Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.

27 tháng 3 2017

ai bit lam ko

26 tháng 7 2016

Sao mà khó dữ...Hừm cho nghĩ một lát nha.ha

26 tháng 7 2016

a) Phân tích được x3(x2 - 7)2 – 36x = x(x + 1 )( x - 1 )(x - 3)(x + 2)(x - 2)( x + 3)

b) Theo phần a ta có :

A = n3(n2 - 7)2 - 36n = n(n + 1)(n - 1) (n - 3)(n + 2)(n - 2)(n + 3)

Đây là tích của 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp có:

- Một bội của 2 nên A chia hết cho 2.

- Một bội của 3 nên A chia hết cho 3.

- Một bội của 5 nên A chia hết cho 5.

- Một bội của 7 nên A chia hết cho 7.

Mà 2; 3; 5; 7 đôi một nguyên tố cùng nhau nên: A chia hết cho (2; 3; 5;7)

Hay A chia hết cho 210.

15 tháng 5 2018

Ta có:

P = \(n^4-14n^3+71n^2-154n+120\)

\(=n^4-3n^3-11n^3+33n^2+38n^2-114n-40n+120\)

\(=n^3\left(n-3\right)-11n^2\left(n-3\right)+38n\left(n-3\right)-40\left(n-3\right)\)

\(=\left(n-3\right)\left(n^3-11n^2+38n-40\right)\)

\(=\left(n-3\right)\left(n^3-4n^2-7n^2+28n+10n-40\right)\)

\(=\left(n-3\right)\left(n-4\right)\left(n^2-7n+10\right)\)

\(=\left(n-3\right)\left(n-4\right)\left(n^2-2n-5n+10\right)\)

\(=\left(n-2\right)\left(n-3\right)\left(n-4\right)\left(n-5\right)\)

Ta có P bằng tích 4 số tự nhiên liên tiếp. Mà tích 4 số tự nhiên liên tiếp chia hết cho 24.

\(=>P⋮24\left(đpcm\right).\)

22 tháng 1 2019

Cách khác:

B= (n^4 - 14n^3 + 49n^2) + 22n^2 -154n +120
= n^2(n^2 -14n +49) + 22n(n-7) +120
= (n(n-7))^2 +10n(n-7) + 12n(n-7) + 10*12
= n(n-7)[n(n-7) + 10] + 12[n(n-7) +10]
= [n(n-7) +10] * [n(n-7) + 12]
= (n^2 - 7n + 10)(n^2 - 7n +12)
= (n-2)(n-5)(n-3)(n-4)
= (n-5)(n-4)(n-3)(n-2)
B là tích của 4 số tự nhiên liên tiếp

=> B chia hết cho 2, 3, 4 mà 2, 3, 4 nguyên tố cùng nhau

=> B chia hết cho 2x3x4

Hay B chia hết cho 24.

=>(đpcm).

27 tháng 1 2022

a) Ta có f(x) - 5 \(⋮\)x + 1 

=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1

=> x3 + mx2 + nx  - 3 \(⋮\)x + 1

=> x = - 1 là nghiệm đa thức 

Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0

<=> m - n = 4 (1) 

Tương tự ta được f(x) - 8 \(⋮\)x + 2 

=> x3 + mx2 + nx - 6 \(⋮\) x + 2

=> x = -2 là nghiệm đa thức

=> (-2)3 + m(-2)2 + n(-2) - 6 = 0

<=> 2m - n = 7 (2) 

Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)

Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2  

27 tháng 1 2022

b)  f(x) - 7 \(⋮\)x + 1

=> x3 + mx + n - 7 \(⋮\) x + 1 

=> x = -1 là nghiệm đa thức 

=> (-1)3 + m(-1) + n - 7 = 0

<=> -m + n = 8 (1) 

Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3 

=> x = 3 là nghiệm đa thức 

=> 33 + 3m + n + 5 = 0

<=> 3m + n = -32 (2) 

Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)

Vậy f(x) = x3 - 10x -2