\(f\left(x\right)\)=(x\(^3\)+12x-31)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

\(a^3=16-8\sqrt{5}+16+8\sqrt{5}+3.\sqrt[3]{16^2-8^2.5}a\)

\(a^3=32+3.\sqrt[3]{4^3\left(4-5\right)}a=32-12a\)

\(f\left(x\right)=\left[\left(32-12a\right)+12a-31\right]^{2016}=1^{2016}=1\)

22 tháng 3 2017

a=\(\sqrt[3]{16-8\sqrt{5}}\)+\(\sqrt[3]{16+8\sqrt{5}}\)

=\(\sqrt[3]{1-3\sqrt{5}+15-5\sqrt{5}}+\sqrt[3]{1+3\sqrt{5}+15+5\sqrt{5}}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}+\sqrt[3]{\left(1+\sqrt{5}\right)^3}\)

=1-\(\sqrt{5}+1+\sqrt{5}\)=2

thay vào ta được f(a)=(8+24-31)2016=(-1)2016=1

20 tháng 1 2019

\(a^3=16-8\sqrt{5}+16+8\sqrt{5}+96\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\)

\(a^3=32+96\sqrt[3]{-64}=32+96.\left(-4\right)=-352\)

đến đây dễ r 

20 tháng 1 2019

\(a^3=32+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\left(\sqrt[3]{16+8\sqrt{5}}+\sqrt[3]{16-8\sqrt{5}}\right)\)

AH
Akai Haruma
Giáo viên
5 tháng 3 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Duong Thi Nhuong TH Hoa Trach - Phong GD va DT Bo Trach - Toán lớp 8 | Học trực tuyến

Phần b đề không rõ.

6 tháng 3 2020

Mình ghi rõ cho bạn xem nha!

Violympic toán 9

31 tháng 1 2017

Câu 7: Từ gt suy ra \(f\) vừa đồng biến vừa nghịch biến nên \(f\) là hằng số, nghĩa là \(f\left(x\right)=1000\) với mọi \(x\). Vậy \(f\left(2015\right)=1000\).

Cũng có thể giải bằng cách thế trực tiếp: \(a+b\le2a+b,5a+b\ge6a+b\) nên \(a=0\).

Câu 9: \(f\left(x_0\right)=\left(\sqrt{3}+\sqrt{5}\right)\) hoặc \(f\left(x_0\right)=-\sqrt{3}-\sqrt{5}\).

Tới đây ngồi giải pt.

19 tháng 8 2017

a,Ta có :\(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\)

\(\Rightarrow x^3=4\left(\sqrt{5}+1\right)-4\left(\sqrt{5}-1\right)-3\sqrt[3]{4\left(\sqrt{5}-1\right).4\left(\sqrt{5}+1\right)}.\left(\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\right)\)\(\Rightarrow x^3=8-3\sqrt[3]{16\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}.x\)

\(\Rightarrow x^3=8-3\sqrt[3]{64}.x\Rightarrow x^3=8-12x\)\(\Rightarrow x^3-12x+8=0\)

Vậy \(x^3+12x-8=0\)

19 tháng 8 2017

b,\(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)(1)

Ta có :\(3=\left(x^2+3\right)-x^2=\left(\sqrt{x^2+3}-x\right)\left(\sqrt{x^2+3}+x\right)\)(2)

\(3=\left(y^2+3\right)-y^2=\left(\sqrt{y^2+3}-y\right)\left(\sqrt{y^2+3}+y\right)\) (3)

Từ (1) và (2) ta suy ra :\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)

Từ (1) và (3) ta suy ra :\(x+\sqrt{x^2+3}=\sqrt{y^2+3}-y\)

Cộng 2 đẳng thức trên vế theo vế ta được :

\(x+y+\sqrt{x^2+3}+\sqrt{y^2+3}=\sqrt{x^2+3}+\sqrt{y^2+3}-x-y\)

\(\Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\)

Vậy B=0

15 tháng 7 2018

bài 2 rút gọn :

a) \(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)

= \(\left|1-\sqrt{2}\right|+\left|\sqrt{2}-3\right|\)

=\(\sqrt{2}-1+3-\sqrt{2}\)

=2

b) \(\sqrt{4-2\sqrt{3}}+\sqrt{7}-\sqrt{48}\)

= \(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{7}-4\sqrt{3}\)

= \(\sqrt{3}-1+\sqrt{7}-4\sqrt{3}\)

= \(\sqrt{7}-3\sqrt{3}+1\)

c)

15 tháng 7 2018

Help mee <3

10 tháng 10 2020

a, \(=2\sqrt{7}-8+15\sqrt{7}-12=17\sqrt{7}-20\)

b, \(=2\sqrt{2}-10\sqrt{2}+4\sqrt{2}=-4\sqrt{2}\)

c, \(=\frac{3}{8}.\frac{4}{3}-2.\frac{2}{5}=\frac{1}{2}-\frac{4}{5}=-\frac{3}{10}\)

d, \(\sqrt{\left(\sqrt{3-1}\right)^2}-\sqrt{\left(\sqrt{3-2}\right)^2}=\sqrt{3-1}-\sqrt{3-2}=\sqrt{2}-\sqrt{1}=\sqrt{2}-1\)

e, \(\sqrt{2-3}\) không tồn tại

15 tháng 12 2017

\(a=\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\Rightarrow a^3=3+\sqrt{17}+3-\sqrt{17}+3\sqrt{\left(3+\sqrt{17}\right)\left(3-\sqrt{17}\right)}\left(\sqrt[3]{3+\sqrt{17}}+\sqrt[3]{3-\sqrt{17}}\right)\\ =6+3a.\sqrt[3]{9-17}\\ =6-6a\\ \Rightarrow f\left(a\right)=\left(a^3+6a-5\right)^{2015}=\left(6-6a+6a-5\right)^{2015}=1\)

12 tháng 11 2015

2) \(a^3=\left(\sqrt[3]{5+\sqrt{52}}+\sqrt[3]{5-\sqrt{52}}\right)^3\)

         \(=5+\sqrt{52}+5-\sqrt{52}+3.\sqrt[3]{\left(5+\sqrt{52}\right)\left(5-\sqrt{52}\right)}.a\)

       \(=10+3.\sqrt[3]{-27}.a\)

\(a^3+9a-10=0\Leftrightarrow\left(a-1\right)\left(a^2+10\right)=0\Rightarrow a=1\)

=> \(f\left(1\right)=1+1+1+1+........+1=2016\)