Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
f(1) = 1+b+c =2
<=> 1+ b+c =2 => b+c = 1 (1)
f(-3) = 9-3b+c =0
<=> 3b-c=9 (2)
Lấy (1) cộng (2)
b+c+3b-c=9+1
4b=10
b=10/4=5/2
=> c = -3/2
![](https://rs.olm.vn/images/avt/0.png?1311)
a, => p^2 = 5q^2 + 4
+, Nếu q chia hết cho 3 => q=3 => p=7 ( t/m )
+, Nếu q ko chia hết cho 3 => q^2 chia 3 dư 1 => 5q^2 chia 3 dư 5
=> p^2 = 5q^2 + 4 chia hết cho 3
=> p chia hết cho 3 ( vì 3 là số nguyên tố )
=> p = 3 => q = 1 ( ko t/m )
Vậy p=7 và q=3
Tk mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
1,Giải sử x0 là nghiệm chung của hai pt
Ta có hệ: \(\left\{{}\begin{matrix}x_0^2-\left(m+2\right)x_0+3m-1=0\left(1\right)\\x_0^2-\left(2m+3\right)x_0+3m+3=0\end{matrix}\right.\)
=> \(\left(2m+3\right)x_0-\left(m+2\right)x_0+3m-1-3m-3=0\)
<=> \(x_0\left(m+1\right)-4=0\)
Do hai pt có nghiệm chung => \(x_0\in R\) => \(m\ne-1\)
<=> \(x_0=\frac{4}{m+1}\) thay vào (1) có
\(\frac{16}{\left(m+1\right)^2}-\frac{\left(m+2\right).4}{m+1}+3m-1=0\)
<=> \(\frac{16}{\left(m+1\right)^2}-\frac{4\left(m+2\right)\left(m+1\right)}{\left(m+1\right)^2}+\frac{3m\left(m+1\right)^2}{\left(m+1\right)^2}-\frac{\left(m+1\right)^2}{\left(m+1\right)^2}=0\)
<=> \(16-4\left(m^2+3m+2\right)+3m\left(m^2+2m+1\right)-\left(m^2+2m+1\right)=0\)
<=> \(16-4m^2-12m-8+3m^3+6m^2+3m-m^2-2m-1=0\)
<=> \(3m^3+m^2-11m+7=0\)
<=> \(3m^3-3m^2+4m^2-4m-7m+7=0\)
<=>\(3m^2\left(m-1\right)+4m\left(m-1\right)-7\left(m-1\right)=0\)
<=> \(\left(m-1\right)\left(3m^2+4m-7\right)=0\)
<=> \(\left(m-1\right)^2\left(3m+7\right)=0\)
<=> \(\left[{}\begin{matrix}m=1\\m=-\frac{7}{3}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b/ Sửa đề chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)
Theo đề bài ta có:
\(\hept{\begin{cases}f\left(-1\right)=a-b+c>0\left(1\right)\\f\left(-2\right)=4a-2b+c>0\left(2\right)\end{cases}}\)
Ta có: \(\frac{5a-3b+2c}{a-b+c}>1\)
\(\Leftrightarrow\frac{4a-2b+c}{a-b+c}>0\)
Mà theo (1) và (2) thì ta thấy cả tử và mẫu của biểu thức đều > 0 nên ta có ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
Nhân 2 vế của BĐT với \(\left(a+b+c\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(3(a^2+b^2+c^2)(a+b)(b+c)(c+a)\ge(a+b+c)\left(Σ_{cyc}(a^2+b^2)(c+a)(c+b)\right)\)
\(\LeftrightarrowΣ_{perms}a^2b\left(a-b\right)^2\ge0\) *đúng*
\(f\left(1\right)=1^2+b\cdot1+c=1+b+c\\ \Leftrightarrow1+b+c=2\\ \Leftrightarrow b+c=1\\ f\left(-3\right)=\left(-3\right)^2+b\cdot\left(-3\right)+c=9-3b+c\\ \Leftrightarrow9-3b+c=0\\ \Leftrightarrow-3b+c=-9\\ \left(b+c\right)-\left(-3b+c\right)=1-\left(-9\right)\\ \Leftrightarrow b+c+3b-c=1+9\\ \Leftrightarrow4b=10\\ \Leftrightarrow b=2,5\\ \Rightarrow2,5+c=1\\ \Leftrightarrow c=-1,5\)
Theo giả thiết bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}f\left(1\right)=1+b+c=2\\f\left(-3\right)=9-3b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=1\\-3b+c=-9\end{matrix}\right.\)
Giải hệ ta tìm được :
\(\left\{{}\begin{matrix}b=\dfrac{5}{2}\\c=-\dfrac{3}{2}\end{matrix}\right.\)