\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

Tìm x để F<0

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(x\ge0,x\ne1\)

\(F=\frac{\sqrt{x}+1}{\sqrt{x}-1}< 0\Leftrightarrow\)\(\sqrt{x}+1\)và \(\sqrt{x}-1\)trái dấu 

\(\Rightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)< 0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)

Vậy \(0< x< 1\)thỏa mãn đề bài.

NV
30 tháng 5 2019

\(F=\left(\frac{3+\sqrt{1-x^2}}{\sqrt{1+x}}\right).\left(\frac{\sqrt{1-x^2}}{3+\sqrt{1-x^2}}\right)=\frac{\sqrt{1-x^2}}{\sqrt{1+x}}=\sqrt{1-x}\)

\(x=4\sqrt{2}-5\Rightarrow F=\sqrt{1-\left(4\sqrt{2}-5\right)}=\sqrt{6-4\sqrt{2}}=\sqrt{\left(2-\sqrt{2}\right)^2}=2-\sqrt{2}\)

23 tháng 8 2019

a, \(A=\sqrt{\left(1-x\right)^2}-1=\left|1-x\right|-1=1-x-1\)(vì x<1)

<=> A=\(-x\)

b,B=\(\frac{3-\sqrt{x}}{x-9}\left(x\ge0,x\ne9\right)\)

=\(\frac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\frac{1}{\sqrt{x}+3}\)

Vậy \(B=-\frac{1}{\sqrt{x}+3}\)

c, C=\(\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}\left(x\ge0,x\ne9\right)\)

=\(\frac{x-2\sqrt{x}-3\sqrt{x}+6}{\sqrt{x}-3}\)=\(\frac{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)=\(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)=\(\sqrt{x}-2\)

Vậy C= \(\sqrt{x}-2\)

d, D=\(5-3x-\sqrt{25-10x+x^2}\left(x< 5\right)\)

= \(5-3x-\sqrt{\left(5-x\right)^2}\)=\(5-3x-\left|5-x\right|\)=\(5-3x-5+x\) (vì x<5)=-2x

Vậy D=-2x

e, E=\(\sqrt{3a}.\sqrt{27a}\) (đk \(a\ge0\))

=\(\sqrt{3.27.a^2}=\sqrt{3^4}.a=9a\)

Vậy E=9a

f, F=\(\frac{1}{a-1}\sqrt{9\left(a-1\right)^2}\) (đk :a>1)

= \(\frac{1}{a-1}.3\left|a-1\right|\)=\(\frac{1}{a-1}.3\left(a-1\right)\) (vì a>1)=3

Vậy F=3

19 tháng 10 2020

a) Để hàm xác định thì \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

b) Ta có: \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(\Rightarrow f\left(4-2\sqrt{3}\right)=\frac{\sqrt{4-2\sqrt{3}}+1}{\sqrt{4-2\sqrt{3}}-1}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-1}=\frac{\sqrt{3}}{\sqrt{3}-2}\)

và \(f\left(a^2\right)=\frac{\sqrt{a^2}+1}{\sqrt{a^2}-1}=\frac{\left|a\right|+1}{\left|a\right|-1}\)(với \(a\ne\pm1\))

* Nếu \(a\ge0;a\ne1\)thì \(f\left(a^2\right)=\frac{a+1}{a-1}\)

* Nếu \(a< 0;a\ne-1\)thì \(f\left(a^2\right)=\frac{a-1}{a+1}\)

c) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)

Để f(x) nguyên thì \(\frac{2}{\sqrt{x}-1}\)nguyên hay \(2⋮\sqrt{x}-1\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà \(\sqrt{x}-1\ge-1\)nên ta xét ba trường hợp:

+) \(\sqrt{x}-1=-1\Rightarrow x=0\left(tmđk\right)\)

+) \(\sqrt{x}-1=1\Rightarrow x=4\left(tmđk\right)\)

+) \(\sqrt{x}-1=2\Rightarrow x=9\left(tmđk\right)\)

Vậy \(x\in\left\{0;4;9\right\}\)thì f(x) có giá trị nguyên 

d) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)\(f\left(2x\right)=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\)

f(x) = f(2x) khi \(\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{2x}+1\right)\)\(\Leftrightarrow\sqrt{2}x+\sqrt{2x}-\sqrt{x}-1=\sqrt{2}x-\sqrt{2x}+\sqrt{x}-1\)\(\Leftrightarrow\sqrt{2x}-\sqrt{x}=-\sqrt{2x}+\sqrt{x}\Leftrightarrow2\sqrt{2x}=2\sqrt{x}\Leftrightarrow\sqrt{2x}=\sqrt{x}\Leftrightarrow x=0\)(tmđk)

Vậy x = 0 thì f(x) = f(2x)

15 tháng 3 2019

\(Q=\left(\frac{\sqrt{x}^2-1}{2\sqrt{x}}\right)^2.\left[\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

\(Q=\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2\sqrt{x}}\right].\left[\frac{\left(\sqrt{x}-1+\sqrt{x}+1\right)\left(\sqrt{x}-1-\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

\(Q=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2\sqrt{x}}.\frac{-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(Q=\frac{-4\sqrt{x}}{2\sqrt{x}}=-2\)

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)Vì \(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))Ta có: Nếu \(\(x&gt;1\Leftrightarrow f\left(x\right)&gt;f\left(1\right)=3\)\)nên pt vô nghiệm Nếu \(\(-3\le x&lt; 1\Leftrightarrow f\left(x\right)&lt; f\left(1\right)=3\)\)nên pt vô nghuêmjVậy x = 1B2, GHPT:...
Đọc tiếp

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)

GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)

\(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))

Ta có: Nếu \(\(x&gt;1\Leftrightarrow f\left(x\right)&gt;f\left(1\right)=3\)\)nên pt vô nghiệm

Nếu \(\(-3\le x&lt; 1\Leftrightarrow f\left(x\right)&lt; f\left(1\right)=3\)\)nên pt vô nghuêmj

Vậy x = 1

B2, GHPT: \(\(\hept{\begin{cases}2x^2+3=\left(4x^2-2yx^2\right)\sqrt{3-2y}+\frac{4x^2+1}{x}\\\sqrt{2-\sqrt{3-2y}}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\end{cases}}\)\)

ĐK \(\(\hept{\begin{cases}-\frac{1}{2}\le y\le\frac{3}{2}\\x\ne0\\x\ne-\frac{1}{2}\end{cases}}\)\)

Xét pt (1) \(\(\Leftrightarrow2x^2+3-4x-\frac{1}{x}=x^2\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow-\frac{1}{x^3}+\frac{3}{x^2}-\frac{4}{x}+2=\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow\left(-\frac{1}{x}+1\right)^3+\left(-\frac{1}{x}+1\right)=\left(\sqrt{3-2y}\right)^3+\sqrt{3-2y}\)\)

Xét hàm số \(\(f\left(t\right)=t^3+t\)\)trên R có \(\(f'\left(t\right)=3t^2+1&gt;0\forall t\in R\)\)

Suy ra f(t) đồng biến trên R . Nên \(\(f\left(-\frac{1}{x}+1\right)=f\left(\sqrt{3-2y}\right)\Leftrightarrow-\frac{1}{x}+1=\sqrt{3-2y}\)\)

Thay vào (2) \(\(\sqrt{2-\left(1-\frac{1}{x}\right)}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\sqrt{\frac{1}{x}+1}=\frac{\sqrt[3]{x^2\left(x+2\right)}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\left(2x+1\right)\sqrt{\frac{1}{x}+1}=x+2+\sqrt[3]{x^2\left(x+2\right)}\)\)

\(\(\Leftrightarrow\left(2+\frac{1}{x}\right)\sqrt{1+\frac{1}{x}}=1+\frac{2}{x}+\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow f\left(\sqrt{1+\frac{1}{x}}\right)=f\left(\sqrt[3]{1+\frac{2}{x}}\right)\)\)

\(\(\Leftrightarrow\sqrt{1+\frac{1}{x}}=\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow\left(1+\frac{1}{x}\right)^3=\left(1+\frac{2}{x}\right)^2\)\)

Đặt \(\(\frac{1}{x}=a\)\)

\(\(\Rightarrow Pt:\left(a+1\right)^3=\left(2a+1\right)^2\)\)

Tự làm nốt , mai ra lớp t giảng lại cho ...

3
13 tháng 1 2019

Vãi ạ :))

13 tháng 1 2019

ttpq_Trần Thanh Phương vãi j ?

9 tháng 6 2017

a) ĐK: \(x-9\ne0\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\ne0\)

Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3>0\)

Nên \(\sqrt{x}-3\ne0\Leftrightarrow x\ne9\)

b) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left(\frac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right)\)

\(=\left[\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

\(=\left[\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]\left(\frac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)

\(=\left(\frac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\right)\left(\frac{1}{\sqrt{x}+1}\right)\)

\(=\frac{-3}{\sqrt{x}+3}\)

c) Ta có: \(\sqrt{x}+3\ge3\)

\(\Rightarrow\frac{3}{\sqrt{x}+3}\le\frac{3}{3}=1\)

\(\Rightarrow\frac{-3}{\sqrt{x}+3}\ge-1\)

Dấu "=" xảy ra khi \(x=0\)

Vậy \(P_{min}=-1\) khi \(x=0\)

d) \(\frac{-3}{\sqrt{x}+3}< \frac{-1}{3}\)

\(\Leftrightarrow-\left(\sqrt{x}+3\right)< -9\)

\(\Leftrightarrow-\sqrt{x}< -6\)

\(\Leftrightarrow\sqrt{x}>6\)

\(\Leftrightarrow x>36\)

e) Thế \(x=3-2\sqrt{2}\) vào P ta được:

\(\frac{-3}{\sqrt{3-2\sqrt{2}}+3}=\frac{-3}{\sqrt{2}-1+3}=\frac{-3}{\sqrt{2}+2}=\frac{-3\left(\sqrt{2}-2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}=\frac{6-3\sqrt{2}}{-2}=\frac{3\sqrt{2}-6}{2}\)

f) \(P=\frac{-3}{\sqrt{x}+3}=-2\Leftrightarrow\sqrt{x}+3=6\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)