K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2021

Gọi O là tâm đường tròn \(\Rightarrow\) O là trung điểm BC

\(\stackrel\frown{BE}=\stackrel\frown{ED}=\stackrel\frown{DC}\Rightarrow\widehat{BOE}=\widehat{EOD}=\widehat{DOC}=\dfrac{180^0}{3}=60^0\)

Mà \(OD=OE=R\Rightarrow\Delta ODE\) đều

\(\Rightarrow ED=R\)

\(BN=NM=MC=\dfrac{2R}{3}\Rightarrow\dfrac{NM}{ED}=\dfrac{2}{3}\)

\(\stackrel\frown{BE}=\stackrel\frown{DC}\Rightarrow ED||BC\) 

Áp dụng định lý talet:

\(\dfrac{AN}{AE}=\dfrac{MN}{ED}=\dfrac{2}{3}\Rightarrow\dfrac{EN}{AN}=\dfrac{1}{2}\)

\(\dfrac{ON}{BN}=\dfrac{OB-BN}{BN}=\dfrac{R-\dfrac{2R}{3}}{\dfrac{2R}{3}}=\dfrac{1}{2}\) 

\(\Rightarrow\dfrac{EN}{AN}=\dfrac{ON}{BN}=\dfrac{1}{2}\) và \(\widehat{ENO}=\widehat{ANB}\) (đối đỉnh)

\(\Rightarrow\Delta ENO\sim ANB\left(c.g.c\right)\)

\(\Rightarrow\widehat{NBA}=\widehat{NOE}=60^0\)

Hoàn toàn tương tự, ta có \(\Delta MDO\sim\Delta MAC\Rightarrow\widehat{MCA}=\widehat{MOD}=60^0\)

\(\Rightarrow\Delta ABC\) đều

NV
27 tháng 7 2021

undefined

22 tháng 11 2021

a) Xét \(\Delta MPQ\)và \(\Delta NPQ\), ta có: \(PM=PN\left(gt\right);QM=QM\left(gt\right);\)PQ chung

\(\Rightarrow\Delta MPQ=\Delta NPQ\left(c.c.c\right)\)(đpcm)

b) Xét \(\Delta MPH\) và \(\Delta NPH\), ta có: \(PM=PN\left(gt\right);MH=NH\)(do H là trung điểm của MN); PH chung

\(\Rightarrow\Delta MPH=\Delta NPH\left(c.c.c\right)\)(đpcm)

c) Xét \(\Delta MNP\)có PM = PN (gt) \(\Rightarrow\Delta MNP\)cân tại P

Mà PH là trung tuyến của \(\Delta MNP\)(do H là trung điểm của MN) \(\Rightarrow\)PH là đường cao của \(\Delta MNP\)(tính chất tam giác cân)

\(\Rightarrow PH\perp MN\)(đpcm)

d) \(\Delta MNP\)cân tại P có trung tuyến PH \(\Rightarrow\)PH là đường phân giác trong \(\Delta MNP\)\(\Rightarrow\)đpcm

e) \(\Delta MNP\)cân tại P có trung tuyến PH \(\Rightarrow\)PH là đường trung trực của MN.(1)

Ta có \(QM=QN\left(gt\right)\)\(\Rightarrow\)Q nằm trên đường trung trực của MN (2)

Từ (1) và (2) hiển nhiên ta có P, H, Q thẳng hàng.

24 tháng 6 2016
Do góc AHC và AKC vuông nên từ giác AHCK nội tiếp, từ đó suy ra góc CHK = góc CAB, góc CKH = CAH = ACB.
 

Vậy ΔHCKΔABC(gg) 

Từ đó suy ra \(\frac{HK}{AC}=\frac{HC}{AB}=sinABD\Rightarrow HK=AC.sinABD\)

 
6 tháng 8 2017

bạn cho mình hỏi nội tiết là j

22 tháng 7 2021

-11/abc