Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Để \(\sqrt{\frac{-2\sqrt{6+\sqrt{23}}}{-x+5}}\) được xác định thì \(-x+5\ne0;-x+5< 0\)
\(\Leftrightarrow x\ne5;x>5\)
b
Để \(\sqrt{49x^2-34x+4}=\sqrt{\left(x-\frac{17+\sqrt{93}}{49}\right)\left(x-\frac{\sqrt{17}-\sqrt{93}}{49}\right)}\) đươc xác định thì:
\(49x^2-34x+4\ge0\Leftrightarrow\frac{\sqrt{17}-\sqrt{93}}{49}\le x\le\frac{\sqrt{19}+\sqrt{93}}{49}\)
Căn thức xác định \(\Leftrightarrow x^2+5x+4\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)\ge0\)
Do đó: (x+1) và (x+4) là 2 số cùng dấu.
TH1: \(\hept{\begin{cases}x+1\ge0\\x+4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge-4\end{cases}\Leftrightarrow}x\ge-1}\)
TH2: \(\hept{\begin{cases}x+1\le0\\x+4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\le-4\end{cases}\Leftrightarrow}x\le-4}\)
Vậy \(\orbr{\begin{cases}x\ge-1\\x\le-4\end{cases}}\)
Chúc bạn học tốt.
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
ĐKXĐ \(x+2\ne0\)và \(5-x\ne0\)
<=> \(x\ne-2\)và \(x\ne5\)
b)\(\sqrt{4x^2-16+16}=6\)<=> \(\sqrt{2^2\left(x^2-2\cdot x\cdot2+2^2\right)}=6\)<=> \(2\sqrt{\left(x-2\right)^2}=6\)<=> \(|x-2|=3\)
Với \(x-2>0\)<=> \(x>2\)
=> \(|x-2|=x-2\)
Phương trình trở thành \(x-2=3\)<=> \(x=5\)(thỏa)
Với \(x-2< 0\)<=> \(x< 2\)
=> \(|x-2|=-\left(x-2\right)=2-x\)
Phương trình trở thành \(2-x=3\)<=> \(-x=1\)<=> \(x=-1\)(thỏa)
Vậy nghiệm của phương trình là\(x=5\)và\(x=-1\)
mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia
ĐKXD : \(\sqrt{\frac{2}{3}x-\frac{1}{5}}\ge0\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{5}\ge0\)
\(\Leftrightarrow\frac{2}{3}x\ge\frac{1}{5}\\ \Leftrightarrow x\ge\frac{3}{10}\)
\(\sqrt{49x^2-24x+4}=\sqrt{\left(7x-\dfrac{12}{7}\right)^2+\dfrac{52}{49}}\)
Có: \(\left(7x-\dfrac{12}{7}\right)^2\ge0\forall x\Rightarrow\left(7x-\dfrac{12}{7}\right)^2+\dfrac{52}{49}\ge\dfrac{52}{49}>0\)
\(\Rightarrow\sqrt{\left(7x-\dfrac{12}{7}\right)^2+\dfrac{52}{49}}>0\) => Biểu thức xác định với mọi x thuộc R
Điều kiện xác định:
49x2 - 24x + 4 ≥ 0
⇔(7x - \(\dfrac{12}{7}\))2 + \(\dfrac{52}{49}\) ≥ 0 (Đây là điều hiển nhiên)
Vậy điều kiện xác định của biểu tức là x∈R