Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=4/3.7 +4/7.11+4/11.15 +.....+4/107/111
=1/3-1/7+1/7-1/11+1/11-1/15+......+1/107-1/111
=1/3-1/111
=12/37
Giải:
A=2/3.7+2/7.11+2/11.15+...+2/n.(n+4)
A=1/2.(4/3.7+4/7.11+4/11.15+...+4/n.(n+4)
A=1/2.(1/3-1/7+1/7-1/11+1/11-1/15+...+1/n-1/n+4)
A=1/2.(1/3-1/n+4)
A=1/6-1/2.(n+4)
⇒A<1/6
Chúc bạn học tốt!
Ta có : \(A=\dfrac{2}{3.7}+\dfrac{2}{7.11}+...+\dfrac{2}{n\left(n+4\right)}\)
\(\Rightarrow4A=\dfrac{8}{3.7}+\dfrac{8}{7.11}+...+\dfrac{8}{n\left(n+4\right)}\)
\(\Rightarrow4A=\dfrac{8}{3.7}+\dfrac{8}{7.11}+...+\dfrac{8}{n\left(n+4\right)}\)\(=\dfrac{2}{3}-\dfrac{2}{7}+\dfrac{2}{7}-\dfrac{2}{11}+...+\dfrac{2}{n}-\dfrac{2}{n+4}=\dfrac{2}{3}-\dfrac{2}{n+4}\)
\(\Rightarrow A=\dfrac{1}{6}-\dfrac{1}{2\left(n+4\right)}\)
- Xét hiệu \(A-\dfrac{1}{6}=-\dfrac{1}{2\left(n+4\right)}< 0\)
Vậy A < 1/6
A = \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)
A = \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\)
A = \(\frac{1}{3}-\frac{1}{99}\)
A = \(\frac{32}{99}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{103.107}\)
=\(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{103.107}\)
=\(\frac{1}{3.107}\)
=\(\frac{1}{321}\)
k mk nha bn
=
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}+0+0+0+0\)
\(=\frac{8}{27}\)
Ta có : \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}\)
\(=\frac{8}{27}\)
\(A=\frac{4^2}{3.7}+\frac{4^2}{7.11}+\frac{4^2}{11.15}+...+\frac{4^2}{107.111}\)
\(A=\) \(4\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{107.111}\right)\)
\(A=4\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\right)\)
\(A=4\left(\frac{1}{3}-\frac{1}{111}\right)\)
\(A=4.\frac{12}{37}\)
\(A=\frac{48}{37}\)
\(A=\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{95.99}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
Ta thấy \(\frac{1}{3}-\frac{1}{7}=\frac{7-3}{3.7}=\frac{4}{3.7}\)
\(\frac{1}{7}-\frac{1}{11}=\frac{11-7}{7.11}=\frac{4}{7.11}\)
..........................
\(\frac{1}{1023}-\frac{1}{1027}=\frac{1027-1023}{1023.1027}=\frac{4}{1023.1027}\)
=> \(\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{1023.1027}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{1023}-\frac{1}{1027}\)
=> =\(\frac{1}{3}-\frac{1}{1027}=\frac{1024}{3.1027}\)
Ta có: \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{1023.1027}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{1023}-\frac{1}{1027}\)
\(=\frac{1}{3}-\frac{1}{1027}=\frac{1024}{3081}\)
4x(\(\frac{1}{3.7}+...+\frac{1}{107.111}\) )
4(\(\frac{1}{3}-\frac{1}{7}+...+\frac{1}{107}-\frac{1}{111}\))
4(\(\frac{1}{3}-\frac{1}{111}\))
4.\(\frac{12}{37}\)
48/37
\(\dfrac{4}{3.7}+\dfrac{4}{7.11}+\dfrac{4}{11.15}+...+\dfrac{4}{59.63}\)
\(=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+...+\dfrac{1}{59}-\dfrac{1}{63}\)
\(=\dfrac{1}{3}-\dfrac{1}{63}\)
\(=\dfrac{20}{63}\)