Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề một chút nhé: Tia phân giác của góc A cắt BC tại I
Câu a
Xét tam giác ABI và tam giác ADI có
AB = AD
\(\widehat{BAI}=\widehat{DAI}\)
AI chung
=> Tam giác ABI = tam giác ADI (c.g.c)
=> \(\widehat{ABI}=\widehat{ADI}\) mà \(\widehat{ABI}=90^o\)
=> \(\widehat{ADI}=90^o\)
=>tam giác ADI vuông tại D
b) Có tam giác ABI = ADI
=> BI = DI
Xét tam giác EBI và CDI có
góc EBI = góc CDI = 90 độ (do tam giác ABC vuông tại A và tam giác ADI vuông tại D)
BI = DI
góc BIE = góc DIC (đối đỉnh)
=> Tam giác BIE = tam giácDIC (g.c.g)
=> IE = IC
=> tam giác IEC cân tại I
c) Có tam giác BIE = tam giác DIC => BE = DC
Lại có AB = AD (gt)
=> AB + BE = AD + DC => AE = AC
=> tam giác AEC cân tại A
mà góc BAC hay góc EAC = 60 độ
=> tam giác AEC đều
A B C D H E F M N
CM: a) Xét t/giác ABM và t/giác ACN
có: AB = AC (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
b) Ta có: BM + MD = BD
CN + ND = CD
Mà BM = CN (gt); MD = ND (gt)
=> BD = CD
Xét t/giác ABD và t/giác ACD
có: AB = AC (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
BD = CD (cmt)
=> t/giác ABD = t/giác ACD (c.g.c)
=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc t/ứng)
=> AD là tia p/giác của \(\widehat{BAC}\)
c) Xét t/giác MEB = t/giác NFC
có: \(\widehat{BEM}=\widehat{CFN}=90^0\) (gt)
BM = CN (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
=> t/giác MEB = t/giác NFC (ch - gn)
d) Ta có: AB = AE + EB
AC = AF + FA
mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)
=> AE = AF
=> t/giác AEF cân tại A
=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)
T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\)
Mà 2 góc này ở vị trí đồng vị
=> EF // BC
e) Xét t/giác AEH và t/giác AFH
có: AE = AF (cmt)
\(\widehat{AEH}=\widehat{AFH}=90^0\) (gt)
AH : chung
=> t/giác AEH = t/giác AFH (ch - cgv)
=> \(\widehat{EAH}=\widehat{FAH}\) (2 góc t/ứng)
=> AH là tia p/giác của \(\widehat{A}\)
Mà AD cũng là tia p/giác của \(\widehat{A}\)
=> AH \(\equiv\) AD
=> A, D, H thẳng hàng
M: a) Xét t/giác ABM và t/giác ACN
có: AB = AC (gt)
�^=�^B=C (vì t/giác ABC cân)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
b) Ta có: BM + MD = BD
CN + ND = CD
Mà BM = CN (gt); MD = ND (gt)
=> BD = CD
Xét t/giác ABD và t/giác ACD
có: AB = AC (gt)
�^=�^B=C (vì t/giác ABC cân)
BD = CD (cmt)
=> t/giác ABD = t/giác ACD (c.g.c)
=> ���^=���^BAD=CAD (2 góc t/ứng)
=> AD là tia p/giác của ���^BAC
c) Xét t/giác MEB = t/giác NFC
có: ���^=���^=900BEM=CFN=900 (gt)
BM = CN (gt)
�^=�^B=C (vì t/giác ABC cân)
=> t/giác MEB = t/giác NFC (ch - gn)
d) Ta có: AB = AE + EB
AC = AF + FA
mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)
=> AE = AF
=> t/giác AEF cân tại A
=> ���^=���^=1800−�^2AEF=AFE=21800−A (1)
T/giác ABC cân tại A
=> �^=�^=1800−�^2B=C=21800−A (2)
Từ (1) và (2) => ���^=�^AEF=B
Mà 2 góc này ở vị trí đồng vị
=> EF // BC
e) Xét t/giác AEH và t/giác AFH
có: AE = AF (cmt)
���^=���^=900AEH=AFH=900 (gt)
AH : chung
=> t/giác AEH = t/giác AFH (ch - cgv)
=> ���^=���^EAH=FAH (2 góc t/ứng)
=> AH là tia p/giác của �^A
Mà AD cũng là tia p/giác của �^A
=> AH ≡≡ AD
=> A, D, H thẳng hàng
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
Bài 1
a) Ta có tam giác ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\) (1)
Xét tam giác BDM và tam giác CEM có \(\widehat{BDM}=\widehat{CEM}=90^o\), BM=CM, \(\widehat{DBM}=\widehat{ECM}\left(cmt\right)\) => tam giác BDM = tam giác CEM (ch.gn)
b) tam giác BDM = tam giác CEM => DM = EM (2 cạnh tg ứng)
Xét tam giác ADM và AEM có
AM chung
\(\widehat{ADM}=\widehat{AEM}=90^o\)
DM = EM (cmt)
=> tam giác ADM = tam giác AEM (ch-cgv)
c) Tam giác BDM = CEM => BD = CE
Có AB = AC(gt) => AD + EB = AE + FC mà BD = CE => AD = AE => tam giác ADE cân tại A
=> \(\widehat{ADE}=\widehat{AED}=\dfrac{180^o-\widehat{DEA}}{2}\) (2)
Từ 1 + 2 => \(\widehat{ADE}=\widehat{ABC}\) mà 2 góc đồng vị => EF // AB
Bài 2 em xem lại đoạn trên AC lấy điểm D, đường phân giác của góc A cắt DC tại I nhé