\(1!+2!+...+100!\)

Hỏi E là số nguyên tố hay hợp số

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2015

ta thấy 1!+2!+3!+4!=33 chia hết cho 3

mặc khác 5!+.......+100! cũng chia hết cho 3 (vì với mọi n >=3, n! luôn chia hết cho 3, mỗi phần tử trong tổng đều chia hết cho 3=> tổng chia hết cho 3)

nên 1!+2!+.....+100! cũng chia hết cho 3

vậy E là hợp số

4 tháng 11 2015

 

 

So so hang la :  100 - 1 + 1 = 100 [so]

Trung binh cong cua day so la : [100+1] \ 2 = 50,5

E = 100 * 50,5 = 5050

26 tháng 5 2016

Đặt n2 + 2006 = a2 (a Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (kN*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số 

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số

26 tháng 5 2016

n là số nguyên tố lớn hơn 3 => n2 đồng dư với 1 (mod 3)

n2+2006 đồng dư với 1+2006 (mod 3)

<=> n+ 2006 đồng dư với 2007 (mod 3) đồng dư với 0 (mod 3) (*Vì 2007 chia hết 3*)

=> n2 +2006 chia hết 3

Vậy n2 +2006 là hợp số

18 tháng 11 2018

A=2.25-2.24

A=2 => A là số nguyên tố

30 tháng 5 2018

Bài 2 :

Với p là số nguyên tố lớn hơn 3 => p chỉ có dạng hoặc 3k + 1 hoặc 3k + 2

+ Nếu p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 \(⋮\)3 và lớn hơn 3 là hợp số ( loại )

Vì p ko có dạng 3k + 1 nên p có dạng 3k + 2

Với p = 3k + 2 thì 4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 là hợp số

Vậy ...

Bài 1 :

Ta có \(1994^{100}-1,1994^{100},1994^{100}+1\) là 3 số tự nhiên liên tiếp nên phải có 1 số chia hết cho 3 mà \(1994^{100}\)có tổng các chữ số là \(1+9+9+4=123\)không chia hết 3 nên \(1994^{100}\)không chia hết cho 3 nên trong 2 số còn lại ít nhất có một số chia hết cho 3 ,số đó không thể là số nguyên tố 

Vậy \(1994^{100}-1\)và \(1994^{100}+1\)không thể đồng thời là số nguyên tố

Bài 2

Do P là số nguyên tố lớn hơn 3 nên 4p không chia hết cho 3 ,tương tự \(4p+2=2\left(2p+4\right)\)cũng không chia hết cho 3

Mà \(4p,4p+1,4p+2\)là 3 số tự nhiên liên tiếp nên ít nhất phải có 1 số chia hêt cho 3 .Do đó \(4p+1⋮3\)mà \(4p+1>13\)nên \(4p+1\)là hợp số 

Chúc bạn học tốt ( -_- )

1 tháng 5 2018

- Vì n là số nguyên tố lớn hơn 3 =) n là số lẻ 
Mà n^2 = n.n = số lẻ . số lẻ = số lẻ
Mà 2015 cũng là số lẻ 
=) n^2+2015=số lẻ + số lẻ = số chẵn chia hết cho 2
Vậy n^2+2015 chia hết cho 1 , 2  và chia hết cho chính nó 
=) n^2+2015 nhiều hơn 2 ước =) Là hợp số 

1 tháng 5 2018

Vì n là số nguyên tố lớn hơn 3

=> n không chia hết cho 3

=> n2 chia 3 dư 1

=> n2 = 3k + 1 ( k \(\inℕ^∗\))

=> n2 + 2015 = 3k + 1 + 2015 = 3k + 2016

Mà \(\hept{\begin{cases}3k⋮3\\2016⋮3\end{cases}}\)=> n+ 2015 là hợp số.

5 tháng 4 2015

dễ mà

ta thấy n^2 là 1 số chính phương mà 1 số chính phương chia 3 dư 0 ;1

do n là snt >3=>n^2chia 3 dư1

=>n^2=3k+1

=>n^2+2006=3k+1+2006=3k+2007=3(k+669) chia hết cho 3

vậy n^2+2006 là hợp số

18 tháng 12 2016

hop so

22 tháng 4 2018

\(Ta\)có:

Tổng các chữ số của M là:

\(1+1+1+...+1=2010.1=2010⋮3\)

\(\Rightarrow M\)là hợp số

Vậy...