K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

\(a,\Leftrightarrow-3\left(m-2\right)+2=1\Leftrightarrow m=\dfrac{7}{3}\)

\(b,\) Gọi \(A\left(x_0;y_0\right)\) là điểm cần tìm

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\\ \Leftrightarrow mx_0-2x_0-y_0+2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\-2x_0-y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cần tìm

15 tháng 11 2021

\(e,\) PT giao Ox: \(y=0\Leftrightarrow\left(m-2\right)x=-2\Leftrightarrow x=\dfrac{-2}{m-2}\Leftrightarrow A\left(-\dfrac{2}{m-2};0\right)\Leftrightarrow OA=\dfrac{2}{\left|m-2\right|}\)

PT giao Oy: \(x=0\Leftrightarrow y=2\Leftrightarrow B\left(0;2\right)\Leftrightarrow OB=2\)

Để \(S_{OAB}=2\Leftrightarrow\dfrac{1}{2}OA\cdot OB=2\Leftrightarrow\dfrac{2}{\left|m-2\right|}\cdot\dfrac{1}{2}\cdot2=2\)

\(\Leftrightarrow\dfrac{2}{\left|m-2\right|}=2\Leftrightarrow\left|m-2\right|=1\Leftrightarrow\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=1\\m=3\end{matrix}\right.\) thỏa yêu cầu đề

19 tháng 6 2015

1)  bạn tự vẽ nha

d <=> (m-2)y=3-2(m-1)x

2) chọn m=0 <=> -2y=3+2x <=> y=-3/2 -x

chọn m=-1 <=> -3y= 3+4x <=> y=-1-4/3 x

xét pt: \(-\frac{3}{2}-x=-1-\frac{4}{3}x\Leftrightarrow\frac{1}{3}x=\frac{1}{2}\Leftrightarrow x=\frac{1}{6}\Rightarrow y=-\frac{3}{2}-\frac{1}{6}=-\frac{5}{3}\)

=> đt d luôn đi qua một điểm cố định có tọa độ (1/6;-5/3)

3) gọi khoảng cách ấy là h 

ta có: \(h=\frac{\left|c\right|}{\sqrt{a^2+b^2}}=\frac{\left|3\right|}{\sqrt{\left(2m-2\right)^2+\left(m-2\right)^2}}=\frac{3}{\sqrt{5m^2-12m+8}}\) 

ta có: \(5m^2-12m+8=5\left(m^2-\frac{12}{5}m+\frac{36}{25}\right)+\frac{4}{5}=5\left(m-\frac{6}{5}\right)^2+\frac{4}{5}\ge\frac{4}{5}\Leftrightarrow\sqrt{5m^2-12m+8}\ge\sqrt{\frac{4}{5}}\)

\(\Rightarrow\frac{3}{\sqrt{5m^2-12m+8}}\le\frac{3}{\sqrt{\frac{4}{5}}}=\frac{3\sqrt{5}}{2}\Rightarrow MaxH=\frac{3\sqrt{5}}{2}\Leftrightarrow m=\frac{6}{5}\)

6 tháng 5 2018

(P) y = x2

(d) y = 2x + m2 + 1

a) Phương trình hoành độ giao điểm:

\(x^2=2x+m^2+1\) (1)

\(\Leftrightarrow x^2-2x-m^2-1=0\)

Nhận xét: \(ac=1\times\left(-m^2-1\right)=-\left(m^2+1\right)\le-1< 0,\forall m\in R\)

⇒ (1) có 2 nghiệm với mọi m

⇒ (P) luôn cắt (d) tại 2 điểm phân biệt A và B.

b)

\(\odot\) Theo định lí Viète, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-1\end{matrix}\right.\)

\(\odot\) \(T=x_1\left(10m+y_2\right)+x_2\left(10m+y_1\right)+1968\)

\(=10m\left(x_1+x_2\right)+x_1\times x_2^2+x_2\times x_1^2+1968\)

\(=20m+x_1x_2\left(x_2+x_1\right)+1968\)

\(=20m-2\left(m^2+1\right)+1968=-2m^2+20m+1966\)

\(=-2\left(m-5\right)^2+2016\le2016\)

Dấu "=" xảy ra khi \(m-5=0\Leftrightarrow m=5\)

6 tháng 5 2018

Mình chưa hiểu phần dưới đây lắm

x1(10m+y2)+x2(10m+y1)+1968

=10m(x1+x2)+x1 . x22 +x2.x12+1968

1. Cho biểu thức: B = \(\left(\sqrt{x}-\dfrac{2}{1+\sqrt{x}}\right):\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{2\sqrt{x}}{1-x}\right)\)với x \(\ge\)0, x\(\ne\)1 a) Rút gọn biểu thức B b) Tìm giá trị của x để biểu thức B < 10 2. Cho đường thằng (d): y = (1 - 2m) x + m - 1 a) Với giá trị nào của m thì đường thằng (d) tạo với trục Ox một góc nhọn? b) Tìm điểm cố định mà đường thẳng (d) luôn đi...
Đọc tiếp

1. Cho biểu thức: B = \(\left(\sqrt{x}-\dfrac{2}{1+\sqrt{x}}\right):\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{2\sqrt{x}}{1-x}\right)\)với x \(\ge\)0, x\(\ne\)1

a) Rút gọn biểu thức B

b) Tìm giá trị của x để biểu thức B < 10

2. Cho đường thằng (d): y = (1 - 2m) x + m - 1

a) Với giá trị nào của m thì đường thằng (d) tạo với trục Ox một góc nhọn?

b) Tìm điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m?

c) Tìm m để khoảng cách từ gốc tọa độ đến đường thằng (d) có giá trị lớn nhất?

3. Cho đường tròn (O,R) đường kính AB. Gọi M là một điểm nằm giữa A và B. Qua M vẽ dây CD vuông góc với AB. Lấy điểm E đối xứng với A qua M.

a) Tứ giác ACED là hình gì? Vì sao?

b) Giả sử R = 6,5 cm, MA = 4 cm. Tính CD

c) Gọi H và K lần lượt là hình chiếu của M trên CA và CB. Chứng minh: MH.MK = \(\dfrac{MC^3}{2R}\)

4. Tìm GTNN của: B = xy + yz + zx trong đó x, y, z thỏa mãn điều kiện x + y + z = 3

Giúp mình với với mơn ạ :vv

1

Bài 2:

a: Để (d) tạo với trục Ox một góc nhọn thì 1-2m>0

=>2m<1

=>m<1/2

b: y=(1-2m)x+m-1

=x-2mx+m-1

=>x-2mx+m-1-y=0

=>m(-2x+1)+x-y-1=0

Điểm mà (d) luôn đi qua có tọa độ là:

-2x+1=0 và x-y=1

=>x=1/2 và y=x-1=1/2-1=-1/2

c: \(d\left(O;d\right)=\dfrac{\left|\left(1-2m\right)\cdot0+\left(-1\right)\cdot0+m-1\right|}{\sqrt{\left(1-2m\right)^2+1}}=\dfrac{\left|m-1\right|}{\sqrt{\left(2m-1\right)^2+1}}\)

Để d lớn nhất thì \(\sqrt{\left(2m-1\right)^2+1}_{MIN}\)

=>m=1/2