Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)
=>ABOC là tứ giác nội tiếp đường tròn đường kính OA
=>A,B,O,C cùng thuộc (I), I là trung điểm của OA
b: Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AO là phân giác của góc BAC
=>\(\widehat{BAC}=2\cdot\widehat{BAO}=60^0\)
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)
nên ΔABC đều
c: Ta có: ΔBOA vuông tại B
=>\(\widehat{BOA}+\widehat{BAO}=90^0\)
=>\(\widehat{BOA}=90^0-30^0=60^0\)
Xét ΔBIO có IO=IB
nên ΔIBO cân tại I
Xét ΔIBO cân tại I có \(\widehat{IOB}=60^0\)
nên ΔIBO đều
=>BI=OI=R
=>\(I\in\left(O\right)\)
Ta có: BI=R
mà BI=CI
nên CI=R
=>OB=BI=CI=OC
=>OBIC là hình thoi
=>BI//OC
Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.
Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>ΔABC cân tại A
b: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO\(\perp\)BC tại I và I là trung điểm của BC
c: Xét ΔOBA vuông tại B có \(BO^2+BA^2=OA^2\)
=>\(BA^2+3^2=5^2\)
=>\(BA^2=25-9=16\)
=>\(BA=\sqrt{16}=4\left(cm\right)\)
Xét ΔBOA vuông tại B có BI là đường cao
nên \(BI\cdot OA=BO\cdot BA\)
=>\(BI\cdot5=3\cdot4=12\)
=>BI=12/5=2,4(cm)
d: Ta có: ΔABI vuông tại I
=>\(IB^2+AI^2=AB^2\)
=>\(IB^2=AB^2-AI^2\left(3\right)\)
Ta có: ΔOIC vuông tại I
=>\(OC^2=OI^2+CI^2\)
=>\(CI^2=OC^2-OI^2\left(4\right)\)
I là trung điểm của BC
=>IB=IC(5)
Từ (3),(4),(5) suy ra \(AB^2-AI^2=OC^2-OI^2\)
=>\(AB^2-OC^2=AI^2-OI^2\)
a: Xét tứ giác KAOB có
góc KAO+góc KBO=180 độ
nên KAOB là tứ giác nội tiếp
b: Xét (O) có
KA,KB là các tiếp tuyến
nên KA=KB
mà OA=OB
nên OK là trung trực của BA
=>OK vuông góc với AB(1)
Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔBCA vuông tại B
=>BC vuông góc với BA(2)
Từ (1), (2) suy ra BC//KO
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA⊥BC
a: Xét tứ giác OBAC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên OBAC là tứ giác nội tiếp
=>O,B,A,C cùng thuộc một đường tròn
Xét (O) có
AB,AC là tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC (3)
b: Xét (O) có
ΔBCD nội tiếp
CD là đường kính
Do đó: ΔDBC vuông tại B
=>DB\(\perp\)BC(4)
Từ (3) và (4) suy ra DB//OA
c: Đề sai rồi bạn
a) OB=OC (=R) VÀ AB=AC(/c 2 tt cắt nhau)\(\Rightarrow\)OA LÀ ĐƯỜNG TRUNG TRỤC CỦA BC. b) \(BD\perp AB\)(t/c tt) và BE \(\perp AC\)(A \(\varepsilon\left(O\right)\)đường kính BC ). Aps dụng hệ thúc lượng ta có AE*AC=AB\(^2\)=AC\(^2\).
c) c/m OD\(^2=OB^2=OH\cdot OA\)và OH*OA=OK*OF ( \(\Delta OAK\omega\Delta OFH\left(g-g\right)\))\(\Rightarrow\frac{OD}{OF}=\frac{OK}{OD}\)mà góc FOD chung\(\Rightarrow\Delta OKD\omega\Delta ODF\left(c-g-c\right)\Rightarrow\widehat{ODF}=\widehat{OKD}=90\Rightarrow OD\perp DF\Rightarrowđpcm\)
1: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
=>A,B,O,C cùng thuộc một đường tròn
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
từ (1),(2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>BC\(\perp\)CD
mà BC\(\perp\)OA
nên CD//OA
2: Ta có: OA là đường trung trực của BC
OA cắt BC tại E
Do đó: E là trung điểm của BC và OA\(\perp\)BC tại E
Xét ΔOBA vuông tại B có BE là đường cao
nên \(OE\cdot OA=OB^2\)
=>\(OE\cdot OA=OD^2\)
=>\(\dfrac{OE}{OD}=\dfrac{OD}{OA}\)
Xét ΔOED và ΔODA có
\(\dfrac{OE}{OD}=\dfrac{OD}{OA}\)
\(\widehat{EOD}\) chung
Do đó: ΔOED~ΔODA
=>\(\widehat{ODE}=\widehat{OAD}\)
a: Xét tứ giác OBAC có góc OBA+góc OCA=180 độ
nên OBAC là tứ giác nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
c: OI*OA=OB^2=OB*OC