K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc OAM+góc OBM=180 độ

=>OAMB nội tiếp

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC

loading...  loading...  

19 tháng 3 2022

1, Vì MA ; MB lần lượt là tiếp tuyến (O) với A;B là tiếp điểm 

=> ^MAO = ^MBO = 900

Xét tam giác MAOB có ^MAO + ^MBO = 1800

mà 2 góc đối Vậy tứ giác MAOB là tứ giác nt 1 đường tròn 

2, Xét tam giác MAC và tam giác MDA

^M _ chung 

^MAC = ^MDA ( cùng chắn cung AC ) 

Vậy tam giác MAC ~ tam giác MDA (g.g) 

\(\dfrac{MA}{MD}=\dfrac{MC}{MA}\Rightarrow MA^2=MD.MC\)

3, Ta có AM = MB ( tc tiếp tuyến cắt nhau ) 

OB = OA = R 

Vậy MO là đường trung trực 

Xét tam giác MAO vuông tại A, đường cao AH 

AO^2 = OH . OM ( hệ thức lượng ) 

\(\Rightarrow OM.OH+MC.MD=AO^2+AM^2=OM^2\left(pytago\right)\)

 

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC

17 tháng 3 2023

Dễ thấy tứ giác OAMB nội tiếp   (1) (do có \(\widehat{OAM}=\widehat{OBM}=90^o\)

Xét đường tròn (O), có I là trung điểm của dây cung CD \(\Rightarrow OI\perp CD\) tại I hay \(\widehat{OEM}=90^o\)

Từ đó suy ra tứ giác OEMB nội tiếp   (2) (\(\widehat{OEM}=\widehat{OBM}=90^o\))

Từ (1) và (2), suy ra 5 điểm O,A,B,M,E cùng nằm trên 1 đường tròn \(\Rightarrow\)Tứ giác AOEB nội tiếp.