Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
C A B D H O
AB = 10cm
BC= 12 cm
Gọi \(H=AD\) \(\Omega\) \(BC\)
Ta có AD vuông góc với BC mà ADlà đường kính
\(\Rightarrow\)AD là đường trung trực của BC
\(\Rightarrow\)H là ttrung điểm \(\Rightarrow HC=HB=\frac{1}{2}.BC=6cm\)
Tam giác ABC vuông tại H
\(\Rightarrow AH=\sqrt{AB^2-HB^2}=8cm\)
Tam giác ABD vuông tại B (chắn nửa đương tròn )
\(\Rightarrow AD=\frac{AB^2}{AH}=\frac{10^2}{8}=12,5cm\)
\(\Rightarrow R=\frac{1}{2}.AD=6,25cm\)
Vậy bán kính của đườn tròn là : \(6,25cm\)
Chúc bạn học tốt !!!
![](https://rs.olm.vn/images/avt/0.png?1311)
a: ΔOAB cân tại O
mà OI là đường trung tuyến
nên OI vuông góc AB
I là trung điểm của AB
=>IA=IB=16/2=8cm
ΔOIA vuông tại I
=>OA^2=OI^2+IA^2
=>OI^2=10^2-8^2=36
=>OI=6(cm)
b: OM=OI+IM
=>6+IM=10
=>IM=4cm
ΔMIA vuông tại I
=>MI^2+IA^2=MA^2
=>\(MA=\sqrt{4^2+8^2}=4\sqrt{5}\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
\(\left\{{}\begin{matrix}\widehat{ACB}+\widehat{BCH}=90^0\\\widehat{CBH}+\widehat{BCH}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{ACB}=\widehat{CBH}\)
\(\Rightarrow\widehat{ABC}=\widehat{CBH}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì OH vuông với AB => H là trung điểm
=> AH = HB = AB/2 = 12/2 = 6 cm
Theo định lí Pytago tam giác AHO vuông tại H ta được :
\(AO=\sqrt{AH^2+OH^2}=\sqrt{64+36}=10\)cm
hay R = 10 cm