Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đường tròn tâm O , đường kính AB các dây AC,AD . Gọi E là điểm bất kỳ trên đường tròn .H,K theo thứ tự là hình chiếu của E trên AC,AD . CMR : \(HB\le AB\)
Cho đường tròn tâm O , đường kính AB các dây AC,AD . Gọi E là điểm bất kỳ trên đường tròn .H,K theo thứ tự là hình chiếu của E trên AC,AD . CMR : \(HB\le AB\)
Bài này khó lắm
mik mới chỉ lớp 7 thôi
làm sao đc bài này
mik ....
.....s...o...r.....r.......y
Bài này là bài 56 trang 98 của cuốn sách NÂNG CAO VÀ PHÁT TRIỂN TOÁN 9 TẬP 1 CỦA VŨ HỮU BÌNH nha.
a) Ta thấy OI//AH//BK \(\left(\perp CD\right)\).
Xét hình thang ABKH (AH//BK), O là trung điểm AB. OI//AH \(\left(I\in HK\right)\) nên I là trung điểm HK.
b) Hạ \(CP\perp AB\) tại P, \(DQ\perp AB\) tại Q. Khi đó IE//CP//DQ \(\left(\perp AB\right)\).
Xét hình thang CDQP (CP//DQ) có I là trung điểm CD (hiển nhiên), IE//CP và \(E\in PQ\) nên IE là đường trung bình của hình thang CDQP \(\Rightarrow IE=\dfrac{CP+DQ}{2}\)
Lại có \(S_{ACB}=\dfrac{1}{2}AB.CP\), \(S_{ADB}=\dfrac{1}{2}.AB.DQ\)
\(\Rightarrow S_{ACB}+S_{ADB}=AB.\dfrac{CP+DQ}{2}=AB.IE\) (đpcm)
c) Ta có \(S_{AHKB}=\dfrac{AH+BK}{2}.HK=OI.HK\)
Do dây CD có độ dài không đổi nên khoảng cách từ O đến dây CD là OI cũng không đổi. Như vậy ta chỉ cần tìm vị trí của C để HK lớn nhất.
Thật vậy, dựng hình bình hành ABLH. Khi đó vì BK//AH nên \(L\in BK\). Đồng thời ta luôn có \(HK\le HL=AB\), suy ra \(S_{AHKB}\le OI.AB\).
Dấu "=" xảy ra \(\Leftrightarrow HK=HL\) \(\Leftrightarrow K\equiv L\) \(\Leftrightarrow\) AHKB là hình bình hành \(\Leftrightarrow\) HK//AB hay CD//AB \(\Rightarrow OI\perp AB\). Vậy C là điểm sao cho \(OI\perp AB\).
(Nếu muốn tìm cụ thể vị trí của C, thì mình nói luôn nó là điểm C sao cho \(sđ\stackrel\frown{AC}=180^o-2arc\cos\left(\dfrac{CD}{AB}\right)\) nhé. Chứng minh cái này dễ, mình nhường lại cho bạn.)
Chỗ vị trí C mình sửa lại là \(sđ\stackrel\frown{AC}=90^o-arc\sin\dfrac{CD}{AB}\) nhé.
Di*k_{m}*C là điểm C nhó vì do bị lỗi phông chữ mong mng thông cảm vs ạ🥺
a. Em tự giải
b.
Do tứ giác BDHM nội tiếp \(\Rightarrow\widehat{HDM}=\widehat{HBM}\) (cùng chắn cung HM)
Do tứ giác ABDE nội tiếp \(\Rightarrow\widehat{HBM}=\widehat{ADE}\) (cùng chắn cung AE)
\(\Rightarrow\widehat{HDM}=\widehat{ADE}\)
\(\Rightarrow DH\) là phân giác trong góc \(\widehat{EDK}\) của tam giác EDK
Lại có \(DH\perp DB\) (góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow DB\) là phân giác ngoài góc \(\widehat{EDK}\) của tam giác EDK
Áp dụng định lý phân giác:
\(\dfrac{EH}{HK}=\dfrac{EB}{BK}=\dfrac{ED}{DK}\) \(\Rightarrow BK.HE=BE.HK\)
c.
Hai điểm D và E cùng nhìn CH dưới 1 góc vuông nên tứ giác CDHE nội tiếp đường tròn đường kính CH
\(\Rightarrow I\) là trung điểm CH
Trong tam giác ABC, do hai đường cao AD và BE cắt nhau tại H \(\Rightarrow H\) là trực tâm
\(\Rightarrow CH\perp AB\) hay C;H;M thẳng hàng
Ta có \(IC=IE\) (do I là tâm đường tròn ngoại tiếp CDE) \(\Rightarrow\Delta CIE\) cân tại I
\(\Rightarrow\widehat{ECI}=\widehat{CEI}\)
Lại có \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O \(\Rightarrow\widehat{OBE}=\widehat{OEB}\)
Mà \(\widehat{OBE}=\widehat{ECI}\) (cùng phụ \(\widehat{BAC}\))
\(\Rightarrow\widehat{CEI}=\widehat{OEB}\)
\(\Rightarrow\widehat{CEI}+\widehat{IEB}=\widehat{OEB}+\widehat{IEB}\)
\(\Rightarrow\widehat{CEB}=\widehat{OEI}\)
\(\Rightarrow\widehat{OEI}=90^{ }\)
Hay \(OE\perp IE\Rightarrow IE\) là tiếp tuyến của đường tròn tâm O
HK<hoac=AB
Kẻ đường cao AH, ta tính được AH = 32cm.
Do AH > HC nên tâm O nằm giữa A và H. Đặt OH = x. Kẻ OM ⊥⊥ AC.
Ta có: ΔAMO∽ΔAHCΔAMO∽ΔAHC (g.g)
⇒AOAC=AMAH⇒32−x40=2032⇒AOAC=AMAH⇒32−x40=2032.
Từ đó tính được x = 7cm.