Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AMB=góc ACB=90 độ
=>BM vuông góc DA và AC vuông góc DB
góc DMH+góc DCH=90+90=180 độ
=>DMHC nội tiếp
Xét ΔHMA vuông tại M và ΔHCB vuông tại C có
góc MHA=góc CHB
=>ΔHMA đồng dạng với ΔHCB
=>HM/HC=HA/HB
=>HM*HB=HA*HC
b: góc DBM=góc CBM=1/2*sđ cung CM
góc MBA=1/2*sđ cung MA
mà sđ cung CM=sđ cung MA
nên góc DBM=góc ABM
=>BM là phân giác của góc DBA
Xét ΔBDA có
BM vừa là đường cao, vừa là phân giác
=>ΔBDA cân tại B
d: Xét ΔMAK vuông tại M và ΔMDH vuông tại M có
MA=MD
góc MAK=góc MDH
=>ΔMAK=ΔMDH
=>MK=MH
Xét tứ giác AKDH có
M là trung điểm chung của AD và KH
AD vuông góc KH
=>AKDH là hình thoi
a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.
Bổ đề chứng minh rất đơn giản, không trình bày ở đây.
Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E
Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE
Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD
Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC
Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).
b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI
Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900
Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)
Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC
Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).
a ) .Xét t/g ABM và t/g NBM có:
AB là đường kính của đường trong (O)
nên : góc ABM = góc NMB = 90 độ
M là điểm chính giữa của cung nhỏ AC
nên : góc ABM = góc MBN=>góc BAM = góc BNM
=> t/g BAN cân tại đỉnh B
Tứ giác AMCB nội tiếp
=> góc BAM = góc MCN ( cùng bù với góc MCB )
=> góc MCN = góc MNC ( cùng bằng góc BAM)
=> t/g MCN cân tại đỉnh M
b) .
Xét t/g MCB và t/g MNQ ta có:
MC = MN ( theo cm trên : MCN cân) ; MB =MQ ( theo giả thiết)
góc BMC = góc MNQ ( vì : góc MCB = góc MNC ; góc MBC = góc MQN ).
=> t/g MCB = t/g MNQ ( c.g.c ) => BC = NQ
Xét t/g vuông ABQ ta có:
AC vuông góc BQ => \(AB^2=BC.BQ=BC.\left(BN+NQ\right)\)
=> \(AB^2=BC.\left(AB+AC\right)=BC.\left(BC+2R\right)\)
=> \(4R^2=BC\left(BC+2R\right)\Rightarrow BC=\left(\sqrt{5}-1\right)R\)