Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
Xét ΔCAB vuông tại C có CM là đường cao
nên \(CB^2=BM\cdot BA\)
=>\(CB=\sqrt{1\cdot6}=\sqrt{6}\left(cm\right)\)
b: ΔOAC cân tại O
mà OE là đường cao
nên OE là phân giác của \(\widehat{AOC}\)
Xét ΔOAE và ΔOCE có
OA=OC
\(\widehat{AOE}=\widehat{COE}\)
OE chung
Do đó: ΔOAE=ΔOCE
=>\(\widehat{OCE}=\widehat{OAE}=90^0\)
=>EC là tiếp tuyến của (O)
gọi F là giao điểm của AC và DB . Kẻ FH ⊥ AB tại H . Gọi K là giao điểm của CB và FH
a/ Xét tam giác ABC nội tiếp đường tròn (O) có AB là đường kính của đường tròn nên tam giác ABC là tam giác vuông(Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp tam giác đó.....)
b/ Vì D là giao điểm hai tiếp tuyến tại A và C của đường tròn (O) nên: DA=DC
D1=D2(t/c 2 tiếp tuyến cắt nhau)
Xét tam giác DHA=DHC(c.g.c).....nênH1=H2
Mà H1+H2=180....nên H1=H2=90...
(Quá lực!!!)
E N A B C D O H L
Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.
Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).
Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.
Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).
-----
Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).
Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)
a) Xét \(\Delta\) ABC có :
AB là đường kính đường tròn (O)
A,B ,C \(\varepsilon\) đường tròn (O)
=> \(\Delta\)ABC vuông tại C
Nối OC
Vì OC = OA = OA (=R)
=> OC = (AO + OB)/2
=> OC = AB/2
=> \(\Delta ABC\) vuông tại C
=> BC^2 = MB . AB
=> BC^2 = 1.6 = 6
=> BC = √6
b) Xét \(\Delta\) EAO và tam giác ECO , ta có :
OA=OC( =R)
Góc AOE = góc COE ( OE vuông góc vs AC do gt)
OE : cạnh chung
=>Tam giác EAO đồng dạng vs tam giác ECO(c.g.c)
=> góc EAO = góc ECO = 90độ (2 góc tương ứng)
=> EC vuông góc vs OC
=> EC là tiếp tuyến của đường tròn (O)