K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3

 

a) Kẻ tiếp tuyến Mx của (O). Khi đó \(Mx\perp MO\).

Ta thấy \(\widehat{xMA}=\widehat{MBA}=\widehat{MFE}\) nên Mx // EF. Do đó \(EF\perp MO\)

Mặt khác, tam giác HAC cân tại H có đường cao HF nên F là trung điểm MC. Tương tự, E là trung điểm MD. Vì vậy, EF là đường trung bình của tam giác MCD \(\Rightarrow\) EF//CD. 

 Do đó, \(MO\perp CD\) \(\Rightarrow\) đt qua M vuông góc với CD đi qua O cố định.

 b) Gọi O' là điểm đối xứng của O qua AB. Kẻ đường kính MK của (O), gọi P là trung điểm AB. Lúc này O' là điểm cố định.

 Khi đó AH//BK (cùng vuông góc với MB) và BH//AK (cùng vuông góc với MA) nên tứ giác AHBK là hình bình hành

 \(\Rightarrow\) Trung điểm P của AB cũng là trung điểm của HK. 

 \(\Rightarrow\) OP là đường trung bình của tam giác KMH 

 \(\Rightarrow\) OP//MH và \(OP=\dfrac{1}{2}MH\)

 \(\Rightarrow\) OO'//MH và \(OO'=MH\)

 \(\Rightarrow\) Tứ giác MOO'H là hình bình hành 

 \(\Rightarrow\) HO' // MO

 Mà \(MO\perp CD\) (cmt) nên \(HO'\perp CD\)

 Như vậy đường thẳng qua H và vuông góc với CD đi qua O' cố định.

30 tháng 3 2018

a)

Từ M kẻ tiếp tuyến Mx của (O) nên OA vuông góc với Mx

Ta có tứ giác MEHF là tứ giác nội tiếp => góc MFE=góc MHE(1)

Mà góc MHE=góc MAH(2) (+góc HMA=90o)

Từ (1) và (2) => góc MAB = góc MFE

Mặt khác góc MAB=góc BMx (=1/2 số đo cung MB )

=>EF song song với Mx

Om vuông góc Mx => OM vuông góc  È 

mà MD vuông góc È => o thuộc MD => dpcm

17 tháng 4 2018

làm câu b đi bạn 

17 tháng 4 2018

bạn xem của nguyễn thị mai anh nhé

25 tháng 2 2017

B O A C D K H E

a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp

b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)

Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)

=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)

c,  Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)

Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)

=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp

=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)

=> \(CE⊥BD\)(ĐPCM)

d, em xem lại xem có gõ sai đề không nhé

16 tháng 8 2018

Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất. 

Nhờ mọi người giải dùm e với.

14 tháng 7 2019

A B O C D M E F K I N L

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA 

Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

11 tháng 3 2020

lm hộ tớ phần 4 thôi nha mn

Gọi A' là giao điểm của đường tròn ngoại tiếp tam giác AEF và tia AB

Ta chứng minh được E,A,N  và M, A, F thẳng hàng

=> A đối xứng với A' qua C => B đối xứng với A' qua điểm A mà A' cố định

=> Tâm I của đường tròn ngoại tiếp tam giác BMN  nằm trên đường trung trực của đoạn thẳng  BA'.