K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 10 2021

Do I là trung điểm AB \(\Rightarrow OI\perp AB\)

Ta có: \(IB=\dfrac{1}{2}AB=4\left(cm\right)\)

Áp dụng định lý Pitago trong tam giác vuông OIB:

\(OI^2+IB^2=OB^2\)

\(\Rightarrow OI=\sqrt{OB^2-IB^2}=\sqrt{5^2-4^2}=3\left(cm\right)\)

NV
3 tháng 10 2021

undefined

13 tháng 5 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Kẻ OJ vuông góc với AB tại J.

Theo quan hệ vuông góc giữa đường kính và dây suy ra: J là trung điểm của AB.

Để học tốt Toán 9 | Giải bài tập Toán 9

Áp dụng định lí Pitago trong tam giác vuông OAJ có:

OJ2 = OA2 – AJ2 = 52 – 42 = 9 (OA = R = 5cm)

=> OJ = 3cm         (1)

Vậy khoảng cách từ tâm O đến dây AB là OJ = 3cm.

b) Kẻ OM vuông góc với CD tại M.

Tứ giác OJIM có: Để học tốt Toán 9 | Giải bài tập Toán 9 nên là hình chữ nhật

Ta có IJ = AJ – AI = 4 – 1 = 3cm

=> OM = IJ = 3cm (Tính chất hình chữ nhật)     (2)

Từ (1), (2) suy ra CD = AB (hai dây cách đều tâm thì bằng nhau). (đpcm)

13 tháng 6 2019

Đáp án A

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vì M là trung điểm của AB nên ta có: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Theo quan hệ vuông góc giữa đường kính và dây ta có:

OM ⊥ AB

Áp dụng định lí Pytago vào tam giác OAM ta có:

O M 2   =   O A 2   -   A M 2   =   52   -   42   =   9   ⇒   O M   =   3   c m

8 tháng 5 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OM vuông góc với CD tại M.

Tứ giác OJIM có: Để học tốt Toán 9 | Giải bài tập Toán 9 nên là hình chữ nhật

Ta có IJ = AJ – AI = 4 – 1 = 3cm

=> OM = IJ = 3cm (Tính chất hình chữ nhật)     (2)

Từ (1), (2) suy ra CD = AB (hai dây cách đều tâm thì bằng nhau). (đpcm)

25 tháng 4 2017

a) Vẽ OH⊥AB, ta có HA=HB=4cm.

Xét tam giác HOB vuông tại H, có:

OH2=OB2−HB2=52−42=9⇒OH=3(cm).

b) Vẽ OK⊥CD. TỨ giác KOHI có ba góc vuông nên là hình chữ nhật, suy ra OK=HI. Ta có HI=4-1=3cm, suy ra OK=3cm.

Vậy OH=OK=3cm.

Hai dây AB và CD cách đều tâm nên chúng bằng nhau.

Do đó AB=CD.

25 tháng 4 2017

a) Vẽ OH ⊥ AB, ta có HA=HB=4cm.

Xét tam giác HOB vuông tại H, có:

OH2 = OB2 – HB2 =52 – 42 = 9

⇒ OH = 3(cm).

b) Vẽ OK ⊥ CD. Tứ giác KOHI có ba góc vuông nên là hình chữ nhật, suy ra OK=HI.

Ta có HI=4-1=3cm, suy ra OK=3cm.

Vậy OH=OK=3cm. Hai dây AB và CD cách đều tâm nên chúng bằng nhau.

Do đó AB=CD.

10 tháng 12 2020

a) Theo đề, ta có: AB<CD  nên OA>OI ( Định lí giữa dây và khoảng cách từ tâm đến dây)

Vậy OA>OI (đpcm)

a: ΔOAB cân tại O

mà OI là đường trung tuyến

nên OI vuông góc AB

I là trung điểm của AB

=>IA=IB=16/2=8cm

ΔOIA vuông tại I

=>OA^2=OI^2+IA^2

=>OI^2=10^2-8^2=36

=>OI=6(cm)

b: OM=OI+IM

=>6+IM=10

=>IM=4cm

ΔMIA vuông tại I

=>MI^2+IA^2=MA^2

=>\(MA=\sqrt{4^2+8^2}=4\sqrt{5}\left(cm\right)\)