K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

deo can

a: Xét (O) có

AM,AN là tiếp tuyến

Do đó: AM=AN và OA là phân giác của góc MON

Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

b: Ta có: \(\widehat{POA}+\widehat{MOA}=\widehat{MOP}=90^0\)

\(\widehat{PAO}+\widehat{NOA}=90^0\)(ΔNOA vuông tại N)

mà \(\widehat{MOA}=\widehat{NOA}\)(OA là phân giác của góc MON)

nên \(\widehat{POA}=\widehat{PAO}\)

=>ΔPAO cân tại P

c: Ta có: AM=AN

=>A nằm trên đường trung trực của MN(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OA là đường trung trực của MN

=>OA\(\perp\)MN tại H

Xét ΔOMA vuông tại M có MH là đường cao

nên \(OH\cdot OA=OM^2=R^2\)

23 tháng 11 2023

a: Gọi giao điểm của MN với OA là H

Xét (O) có

AM,AN là tiếp tuyến

Do đó: AM=AN và AO là phân giác của \(\widehat{MAN}\)

AO là phân giác của góc MAN

=>\(\widehat{MAO}=\widehat{NAO}\)

OM=ON

=>O nằm trên đường trung trực của MN(1)

AM=AN

=>A nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra AO là đường trung trực của MN

=>AO vuông góc với MN tại trung điểm của MN

=>AO vuông góc với MN tại H và H là trung điểm của MN

ΔAMO vuông tại M

=>\(MA^2+MO^2=OA^2\)

=>\(MA^2+3^2=5^2\)

=>\(MA^2=5^2-3^2=16\)

=>MA=4(cm)

Chu vi tứ giác OMAN là:

OM+MA+AN+ON

=3+4+4+3

=6+8=14(cm)

Xét ΔOMA vuông tại M có MH là đường cao

nên \(MH\cdot OA=MO\cdot MA\)

=>\(MH\cdot5=3\cdot4=12\)

=>MH=2,4(cm)

H là trung điểm của MN

=>MN=2*MH

=>MN=2*2,4

=>MN=4,8(cm)

b: SO\(\perp\)OM

MA\(\perp\)OM

Do đó: SO//MA

=>\(\widehat{SOA}=\widehat{MAO}\)

mà \(\widehat{MAO}=\widehat{NAO}\)(cmt)

nên \(\widehat{SOA}=\widehat{MAO}=\widehat{NAO}\)

=>\(\widehat{SOA}=\widehat{SAO}\)

=>SA=SO

10 tháng 10 2021

1: Xét tứ giác AMON có 

\(\widehat{AMO}+\widehat{ANO}=180^0\)

Do đó: AMON là tứ giác nội tiếp

hay A,M,O,N cùng thuộc một đường tròn

Xét (O) có

AM,AN là các tiếp tuyến

Do đó: AM=AN

=>A nằm trên đường trung trực của MN(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OA là đường trung trực của MN

=>OA\(\perp\)MN tại I

Xét ΔOHA vuông tại H và ΔOIC vuông tại I có

\(\widehat{HOA}\) chung

Do đó: ΔOHA~ΔOIC

=>\(\dfrac{OH}{OI}=\dfrac{OA}{OC}\)

=>\(OH\cdot OC=OA\cdot OI\)

mà \(OA\cdot OI=OM^2=OB^2\)

nên \(OB^2=OH\cdot OC\)

=>\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

Xét ΔOBC và ΔOHB có

\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

\(\widehat{BOC}\) chung

Do đó: ΔOBC~ΔOHB

=>\(\widehat{OBC}=\widehat{OHB}\)

mà \(\widehat{OHB}=90^0\)

nên \(\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

21 tháng 1

mà OA⋅OI=OM2=OB2

nên OB2=OH⋅OC

đoạn này không hiểu ạ , góc B đã vuông đâu

a: góc OMA+góc ONA=180 độ

=>OMAN nội tiếp

b: OMAN nội tiếp

=>góc AOM=góc ANM

mà góc AOM=góc AOn

nên góc AON=góc ANM