K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

\(a,\)Ta có: \(\hept{\begin{cases}MA=MB\\OA=OB=R\end{cases}}\)

\(\Rightarrow MO\)là đường trung trực của \(AB\)

   \(\Rightarrow MO\perp AB\)tại trung điểm \(K\)của \(AB\)        

\(b,\)Áp dụng hệ thức lượng vào tam giác vuông \(MAO\)có:

\(+\)\(^{^{ }OA^2+AM^2=OM^2\Leftrightarrow AM=\sqrt{OM^2-OA^2}\Leftrightarrow AM=\sqrt{\frac{8}{5}R)^2-R^2}\Leftrightarrow AM=\frac{\sqrt{39}R}{5}}\)

\(+\) \(AK.OM=OA.AM\Leftrightarrow AK.\frac{8}{5}R\)\(=R.\frac{\sqrt{39}}{5}R\Rightarrow AB=2AK=R\frac{\sqrt{39}}{4}\)

\(+\) \(OA^2=OK.ON\Leftrightarrow OK=\frac{OA^2}{ON}=\frac{R^2}{\frac{8R}{5}}\)\(=\frac{5R}{8}\)

\(c,\)Ta có: \(\widehat{ABN}=90\)(B thuộc đường tròn đường kính AN) \(\Rightarrow BN//MO\left(\perp AB\right)\)

Do đó; \(\hept{\begin{cases}\widehat{AOM=\widehat{ANB}}\\\widehat{AOM=\widehat{BOM}}\end{cases}}\)

\(\Rightarrow\widehat{BOM=\widehat{ANB}}\)

Xét tam giác BHA  và MBO có:

\(\hept{\begin{cases}\widehat{BHN}=\widehat{MBO}=90\\\widehat{BNH}=\widehat{BOM}\end{cases}}\)\(\Rightarrow\Delta BHN\simeq\Delta MBO\)\(\Rightarrow\hept{\begin{cases}BH=BN\\MB=MO\end{cases}}\)\(\Rightarrow BH.MO=BN.MB\left(đpcm\right)\)

                                                                                                     

         

a: Xét (O) có 

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO⊥AB

mà ΔOAB cân tại O

nên K là trung điểm của AB

16 tháng 6 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Ta có:

K là trung điểm của CE (E đối xứng với C qua AB)

K là trung điểm của AB

AB ⊥ CE (MO ⊥ AB)

⇒ Tứ giác AEBC là hình thoi

⇒ BE // AC

Mà AC ⊥ AD (A thuộc đường tròn đường kính CD)

Nên BE ⊥ AD và DK ⊥ AB

Vậy E là trực tâm của tam giác ADB

a: Xét tứ giác MAOB có

\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

b; Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB

6 tháng 12 2023

bạn ơi cho mình xin hình vẽ được không

 

8 tháng 9 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Tam giác MAO vuông tại A, AK là đường cao có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

28 tháng 12 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Ta có:

MA = MB ( tính chất 2 tiếp tuyến cắt nhau)

OA = OB ( cùng bằng bán kính đường tròn (O)

⇒ OM là đường trung trực của AB

OM ∩ AB = K ⇒ K là trung điểm của AB

NV
26 tháng 12 2022

Do MA là tiếp tuyến \(\Rightarrow OA\perp MA\) hay tam giác OAM vuông tại A

Áp dụng định lý Pitago:

\(MA=\sqrt{OM^2-OA^2}=\sqrt{\left(\dfrac{8R}{5}\right)^2-R^2}=\dfrac{R\sqrt{39}}{5}\)

Theo t/c hai tiếp tuyến cắt nhau ta có \(AM=BM\)

Mà \(OA=OB=R\Rightarrow OM\) là trung trực AB \(\Leftrightarrow\left\{{}\begin{matrix}OM\perp AB\\AK=BK\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông OAM:

\(AK.OM=OA.AM\Rightarrow AK=\dfrac{OA.AM}{OM}=\dfrac{R\sqrt{39}}{8}\)

\(\Rightarrow AB=2AK=\dfrac{R\sqrt{39}}{4}\)

Áp dụng định lý Pitago trong tam giác vuông AOK:

\(OK=\sqrt{OA^2-AK^2}=\sqrt{R^2-\left(\dfrac{R\sqrt{39}}{8}\right)^2}=\dfrac{5R}{8}\)

loading...

1 tháng 12 2023

O A B M H C D K F I

a/

Xét tg vuông AMO và tg vuông BMO có

MA=MB (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)

OA=OB=R

=> tg AMO = tg BMO (2 tg vuông có 2 cạnh góc vuông bằng nhau)

\(\Rightarrow\widehat{AMO}=\widehat{BMO}\)

Xét tg MAB có

MA=MB (cmt) => tg MAB cân tại M

\(\widehat{AMO}=\widehat{BMO}\) (cmt)

\(\Rightarrow OM\perp AB\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)

Xét tg vuông AMO có

\(AM^2=MO.MH\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

b/

Ta có \(\widehat{ADC}=90^o\) (góc nt chắn nửa đường tròn) => tg ACD vuông tại D \(\Rightarrow AD\perp MC\)

Xét tg vuông AMC có

\(AM^2=MD.MC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Ta có

\(AM^2=MO.MH\) (cmt)

\(\Rightarrow MH.MO=MD.MC\)

c/ Xét tg AMK có

\(OM\perp AB\left(cmt\right)\Rightarrow OH\perp AK\)

\(AD\perp MC\left(cmt\right)\Rightarrow AD\perp MK\)

\(\Rightarrow KI\perp AB\) (trong tg 3 đường cao đồng quy)

Phần còn lại không biết điểm E là điểm nào?

 

 

NV
5 tháng 1 2024

a.

Ta có \(MA=MB\) (t/c hai tiếp tuyến cắt nhau)

\(OA=OB=R\)

\(\Rightarrow OM\) là trung trực AB hay OM vuông góc AB

AC là đường kính và B là điểm thuộc đường tròn \(\Rightarrow\widehat{ABC}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{ABC}=90^0\Rightarrow AB\perp BC\)

\(\Rightarrow BC||OM\) (cùng vuông góc AB)

b.

Do MA là tiếp tuyến \(\Rightarrow AM\perp AC\) hay tam giác MAC vuông tại A

AC là đường kính và K thuộc đường tròn \(\Rightarrow\widehat{AKC}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{AKC}=90^0\) hay AK là đường cao trong tam giác vuông MAC

Áp dụng hệ thức lượng:

\(AC^2=CK.CM\Rightarrow CK.CM=\left(2R\right)^2=4R^2\)

c.

Em có nhầm đề ko nhỉ, vì 2 góc này hiển nhiên bằng nhau, ko cần chứng minh, do 1 góc là góc nội tiếp và 1 góc là góc tạo bởi tiếp tuyến và dây cung, cùng chắn cung BK.

NV
5 tháng 1 2024

loading...