K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

A B C O I G J S K H L A' M N

a) Đặt J là trung điểm cạnh BC. Theo quan hệ vuông góc giữa đường kính và dây ta có ^OIC = ^OJC = 900

Vậy I thuộc đường tròn đường kính OC cố định (đpcm).

b) Kẻ đường kính BK của (O). d cắt CK tại điểm S. Ta có AK vuông góc AB, IS vuông góc AB

Suy ra IS // AK. Vì I là trung điểm cạnh AC của tam giác AKC nên S là trung điểm CK cố định (đpcm).

c) OJ cắt (O) tại hai điểm phân biệt là A' và L (A' thuộc cung lớn BC). Hạ AH vuông góc BC

Ta thấy \(AH+JL\le AL\le2R=A'L\Rightarrow AH\le A'L-JL=A'J\)

Suy ra \(S=\frac{AH.BC}{2}\le\frac{A'J.BC}{2}\)(không đổi). Vậy S lớn nhất khi A trùng A'.

d) Trên đoạn JB,JC lấy M,N sao cho JM = JN = 1/6.BC. Khi đó M,N cố định.

Đồng thời \(\frac{JG}{JA}=\frac{JM}{JB}=\frac{JN}{JC}=\frac{1}{3}\). Suy ra ^MGN = ^BAC = 1/2.Sđ(BC (Vì GM // AB; GN // AC)

Vậy G là các điểm nhìn đoạn MN dưới một góc không đổi bằng 1/2.Sđ(BC, tức là một đường tròn cố định (đpcm).

23 tháng 11 2019

Chào chú Minh.

1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR  giao điểm hai đường chéo nằm trên 1 đường trong cố định2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động3. Cho (O,R) BC là dây cố định. A là  1 điểm di động trên (O,R). Lấy M đối xứng...
Đọc tiếp

1. Cho (O,R) dây AB cố định. Từ C di động trên (O) dựng hình bình hành CABD. CMR  giao điểm hai đường chéo nằm trên 1 đường trong cố định

2. Cho BC cố định, I là trung điểm BC, A di động trên mặt phẳng sao cho BA=BC, H là trung điểm của AC, AI cắt BH tại M. Hỏi M di động trên di động trên đường nào thì A di động

3. Cho (O,R) BC là dây cố định. A là  1 điểm di động trên (O,R). Lấy M đối xứng với C qua trung điểm I của AB. Hỏi M di động trên đường nào khi A di động

4.  Cho A di chuyển trên (O,R) đường kính BC gọi M đối xứng với A qua B, H là hình chiếu của A trên BC, I là trung điểm HC

a. CMR M chuyển động trên (O,R) 1 đường thẳng tròn cố định 

b. CMR tam giác AHM  đồng dạng tam giác CIA

c. CMR MH vuông góc AI

d MH cắt (O) tại E và F đường thẳng AI cắt (O) tại G. CMR Tổng bình phương các cạnh  của tứ giác AEGF ko đổi

0
15 tháng 9 2017

Khó đấy

15 tháng 9 2017

 a) Ta có: góc AME = 90 độ (góc nt chắn nửa đt) 
=> AN vuông góc EM tại M 
Mặt khác: ACN = 90 độ (góc nt chắn nửa đt) 
=> AE vuông góc CN tại C 
Xét tam giác ANE có : NC và EM là các đường cao 
=> B là trực tâm tam giác ANE 
=> AB vuông góc NE (t/c trực tâm tam giác) 
b) Ta có M là trung điểm AN (t/c đối xứng) 
và M cũng là trung điểm EF (t/c đói xứng) 
Do đó tứ giác AENF là hính bình hành 
=> FA song song NE 
Mà NE vuông góc AB (cmt) 
=> FA vuông góc AB tại A thuộc (O) 
Vậy FA là tiếp tuyến của đt (O) 
c)Ta có M là trung điểm AN (t/c đối xứng) 
AN vuông góc BF tại M (góc AMB =90 độ) 
=> BF là đường trung trực của AN 
Xét tam giác AFB và tam giác NFB có 
1/ BF cạnh chung 
2/ FA = FN (t/c đ trung trực) 
3/ BA = BN (t/c đ trung trực) 
=> tam giác AFB = tam giác NFB 
=> góc FAB = góc FNB 
Mà FAB = 90 độ (cmt) 
=> góc FNB bằng 90 độ 
=> FN vuông góc với BN tại N thuộc (B;BN) 
Mà BN = AB 
=> FN là tiếp tuyến cửa đt (B;AB)

23 tháng 4 2019

bạn ơi cho mình hỏi bài này ở đề năm bao nhiêu của thành phố nào vậy bạn?????

2 tháng 5 2019

3. Xét tứ giác BFHD có:
HFB + HDB = 90º + 90º = 180º => BFHD là tứ giác nội tiếp. ⇒ FBH = FDH (1)
Tương tự có DHEC là tứ giác nội tiếp, ⇒HCE = HDE (2)

Mà BFEC là tứ giác nội tiếp nên FCE = FBE (3)
Từ (1) (2) (3)⇒ 2ABE = FDH + HDE = FDE
Vì BFEC là tứ giác nội tiếp đường tròn tâm I, đường kính BC nên theo quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung EF, ta có: FIE = 2.FBE = 2.ABE
⇒FIE = FDE

4.Vì BFEC là tứ giác nội tiếp nên:
ABC = 180º – FEC = AEF => ΔAEF ~ ΔABC (g.g)2016-04-23_193155

Suy ra độ dài EF không đổi khi A chạy trên cung lớn BC của đường tròn (O)
Gọi K là giao điểm thứ 2 của ED và đường tròn đường kính BC
Theo tính chất góc ngoài: FDE = DKE + DEK
Theo ý 3 và quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung, có FDE = FIE = 2.DKE

⇒DKE = DEK => ΔDEK cân tại D => DE = DK

Chu vi ΔDEF là P = DE + EF + FD = EF + FD + DK = EF + FK
Có FK ≤ BC ( dây cung – đường kính) => P ≤ EF + BC không đổi
Dâu bằng xảy ra khi và chỉ khi FK đi qua I ⇔ D trùng I ⇔ ΔABC cân tại A.
Vậy A là điểm chính giữa của cung lớn BC

22 tháng 12 2016

giúp mình đi nhá!!! cần gấp á!!

23 tháng 12 2016

chả ai quan tâm đâu :v toán chả ai giải :v