Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét ΔΔ ABC có OA=OB=OC=12AB.OA=OB=OC=12AB.
⇒Δ⇒Δ ABC vuông tại CC ⇒AC⊥BC.⇒AC⊥BC.
Ta có AD là tiếp tuyến của nửa đường tròn tâm O nên AD ⊥⊥ AB.
Trong ΔΔ ABD vuông tại A có AC⊥BD⇒BC.BD=AB2.AC⊥BD⇒BC.BD=AB2.
Mà AB = 2R nên BC.BD=4R2.BC.BD=4R2.
b, Tam giác ACD vuông tại C có I là trung điểm của AD
⇒AI=DI=CI=12AD.⇒AI=DI=CI=12AD. (Tính chất đường trung tuyến ứng với cạnh huyền).
Xét tam giác AOI và COI có
OI chung
OA = OC
AI = CI
⇒ΔAOI=ΔCOI(c−c−c).⇒ΔAOI=ΔCOI(c−c−c). ⇒ˆIAO=ˆICO⇒IAO^=ICO^ (hai góc tương ứng).
Mà ˆIAO=900⇒ˆICO=900IAO^=900⇒ICO^=900 hay IC ⊥⊥OC
⇒⇒IC là tiếp tuyến của nửa đường tròn tâm O.
c, Ta có AD//CH (cùng vuông góc với AB)
Trong tam giác BAI có KH // AI ⇒KHAI=BKBI⇒KHAI=BKBI (định lý Ta-lét).
Trong tam giác BDI có CK // DI ⇒CKDI=BKBI⇒CKDI=BKBI (định lý Ta-lét).
Suy ra KHAI=CKDI.KHAI=CKDI.
Mà AI = DI nên KH = CK hay K là trung điểm của CH. (điều phải chứng minh).
a: góc ACO=1/2*sđ cung AO=90 độ
=>OC//BD
Xét ΔADB có
O là trung điểm của AB
OC//BD
=>C là trung điểm của AD
b: BC là tiếp tuyến của (O')
=>góc BCO'=90 độ
=>góc O'CA=góc OCB
=>góc CO'O=góc O'CO=góc O'OC
=>ΔOO'C đều
=>C thuộc (O') sao cho ΔOCO' đều
=>Dựng đường trung trực của OO' cắt (O') tại C, ta đc điểm C cần tìm
a: góc ACO=1/2*sđ cung AO=90 độ
=>OC//BD
Xét ΔADB có
O là trung điểm của AB
OC//BD
=>C là trung điểm của AD
b: BC là tiếp tuyến của (O')
=>góc BCO'=90 độ
=>góc O'CA=góc OCB
=>góc CO'O=góc O'CO=góc O'OC
=>ΔOO'C đều
=>C thuộc (O') sao cho ΔOCO' đều
=>Dựng đường trung trực của OO' cắt (O') tại C, ta đc điểm C cần tìm