Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
góc DCA=góc DBA
góc AKB=góc AHB=90 độ
=>AHBK nội tiếp
=>góc AKB+góc AHB=180 độ
=>góc AKH=góc ABH=góc HCD
góc DAC=góc DBC=góc DIH
=>180 độ-góc DAC=180 độ-góc DIH
=>góc CAK=góc HIC
=>góc HAK=góc HIC
mà góc AKH=góc HCI
nên ΔHAK đồng dạng với ΔHIC
=>góc AHK=góc IHC
=>góc IHC+góc KHC=180 độ
=>góc KHI=180 độ
=>K,I,H thẳng hàng
Gọi A' là giao điểm của đường tròn ngoại tiếp tam giác AEF và tia AB
Ta chứng minh được E,A,N và M, A, F thẳng hàng
=> A đối xứng với A' qua C => B đối xứng với A' qua điểm A mà A' cố định
=> Tâm I của đường tròn ngoại tiếp tam giác BMN nằm trên đường trung trực của đoạn thẳng BA'.
a: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
Suy ra: \(\widehat{OAC}=\widehat{OBC}=90^0\)
hay BC là tiếp tuyến của (O)
b: Xét (O) có
ΔABD nội tiếp
BD là đường kính
Do đó: ΔABD vuông tại A
Suy ra: BA⊥AD
mà AB⊥OC
nên AD//OC
vi O là tâm.AB vuông góc với nhau nên BC là đường kính.
Vậy BC là đương kính.