K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho đường tròn (O;R) với dây cung AB không đi qua tâm. Lấy S là một điểm bất kì trên tia đối của tia AB (S khác A). Từ điểm S vẽ hai tiếp tuyến SC, SD với đường tròn (O;R) sao cho điểm C nằm trên cung nhỏ AB (C, D là các tiếp điểm). Gọi H là trung điểm của đoạn thẳng AB.1)      Chứng minh năm điểm C, D, H, O, S thuộc đường tròn đường kính SO.2)      Khi SO = 2R, hãy tính độ dài đoạn...
Đọc tiếp

Cho đường tròn (O;R) với dây cung AB không đi qua tâm. Lấy S là một điểm bất kì trên tia đối của tia AB (S khác A). Từ điểm S vẽ hai tiếp tuyến SC, SD với đường tròn (O;R) sao cho điểm C nằm trên cung nhỏ AB (C, D là các tiếp điểm). Gọi H là trung điểm của đoạn thẳng AB.

1)      Chứng minh năm điểm C, D, H, O, S thuộc đường tròn đường kính SO.

2)      Khi SO = 2R, hãy tính độ dài đoạn thẳng SD theo R và tính số đo góc CSD .

3)      Đường thẳng đi qua điểm A và song song với đường thẳng SC, cắt đoạn thẳng CD tại điểmK. Chứng minh tứ giác ADHK là tứ giác nội tiếp và đường thẳng BK đi qua trung điểm của đoạn thẳng SC.

4)      Gọi E là trung điểm của đoạn thẳng BD và F là hình chiếu vuông góc của điểm E trên đường thẳng AD. Chứng minh rằng, khi điểm S thay đổi trên tia đối của tia AB thì điểm F luôn thuộc một đường tròn cố định.

4
6 tháng 5 2019

1 HSG toán đăng 1 câu hỏi khó về toán thì ai giải xD

6 tháng 5 2019

hả

mik đăng để vào đc chỗ toán 9 thui

kkkkkkkkkkkk

27 tháng 5 2018

giúp câu c

11 tháng 3 2020

lm hộ tớ phần 4 thôi nha mn

Gọi A' là giao điểm của đường tròn ngoại tiếp tam giác AEF và tia AB

Ta chứng minh được E,A,N  và M, A, F thẳng hàng

=> A đối xứng với A' qua C => B đối xứng với A' qua điểm A mà A' cố định

=> Tâm I của đường tròn ngoại tiếp tam giác BMN  nằm trên đường trung trực của đoạn thẳng  BA'.

 

31 tháng 1 2019

a, Chứng minh được  H C B ^ = H K B ^ = 90 0

b,  A C K ^ = H B K ^  (CBKH nội tiếp)

Lại có:  A C M ^ = H B K ^ = 1 2 s đ A M ⏜

=>  A C M ^ = A C K ^

c, Chứng minh được:

DMCA = DECB (c.g.c) => MC = CE

Ta có:  C M B ^ = C A B ^ = 1 2 s đ C B ⏜ = 45 0

=> DMCE vuông cân tại C

d, Gọi  P B ∩ H K = I

Chứng minh được DHKB đồng dạng với DAMB (g.g)

=>  H K K B = M A M B = A P R => H K = A P . B K R

Mặt khác: ∆BIK:∆BPA(g.g) => (ĐPCM)

a: ΔODE cân tại O

mà OM là trung tuyến

nên OM vuông góc DE

=>góc OMA=90 độ=góc OCA=góc OBA

=>O,A,B,M,C cùng thuộc 1 đường tròn

b: Xét ΔBSC và ΔCSD có

góc SBC=góc SCD

góc S chung

=>ΔBSC đồng dạng với ΔCSD

=>SB/CS=SC/SD

=>CS^2=SB*SD

góc DAS=gócEBD

=>góc DAS=góc ABD

=>ΔSAD đồng dạng với ΔSBA

=>SA/SB=SD/SA

=>SA^2=SB*SD=SC^2

=>SA=SC
c; BE//AC

=>EH/SA=BH/SC=HJ/JS

mà SA=SC
nênHB=EH

=>H,O,C thẳng hàng

3 tháng 3 2020

O A B C M K H E d P F I

1) Dễ thấy \(\widehat{HCB}=\widehat{ACB}=90^o\)

tứ giác CBKH có \(\widehat{HKB}=\widehat{HCB}=90^o\)nên là tứ giác nội tiếp

\(\Rightarrow\widehat{HCK}=\widehat{HBK}\)( 1 )

Mà \(\widehat{ACM}=\widehat{ABM}=\frac{1}{2}sđ\widebat{AM}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(\widehat{ACM}=\widehat{ACK}\)

2) Xét \(\Delta AMC\)và \(\Delta BEC\)có :

AM = BE ; AC = BC ; \(\widehat{MAC}=\widehat{CBE}=\frac{1}{2}sđ\widebat{MC}\)

\(\Rightarrow\Delta AMC=\Delta BEC\)( c.g.c )

\(\Rightarrow MC=EC\)

Ta có : \(\widehat{CMB}=\frac{1}{2}sđ\widebat{BC}=45^o\)

Suy ra \(\Delta ECM\)vuông cân tại C

3) Ta có : \(\frac{AP.MB}{AM}=R=OB\Rightarrow\frac{AP}{MA}=\frac{OB}{MB}\)

Xét \(\Delta APM\)và \(\Delta OBM\), ta có :

\(\frac{AP}{MA}=\frac{OB}{MB}\)\(\widehat{PAM}=\widehat{MBO}=\frac{1}{2}sđ\widebat{AM}\)

\(\Rightarrow\Delta APM\approx\Delta BOM\left(c.g.c\right)\)

\(\Rightarrow\Delta APM\)cân tại P ( vì \(\Delta BOM\)cân tại O )

\(\Rightarrow PA=PM\)

Gọi giao điểm của BM và ( d ) là F ; giao điểm của BP với HK là I

Xét tam giác vuông AMF có PA = PM nên PA = PM = PF

Theo định lí Ta-let, ta có :

\(\frac{HI}{FP}=\frac{BI}{BP}=\frac{KI}{AP}\Rightarrow HI=KI\)

vì vậy PB đi qua trung điểm của HK