K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

MB,MA là các tiếp tuyến

Do đó: MB=MA và MO là phân giác của \(\widehat{BMA}\)

Xét (O') có

MA,MC là các tiếp tuyến

Do đó: MA=MC và MO' là phân giác của \(\widehat{AMC}\)

Ta có: MB=MA

MA=MC

Do đó: MB=MC

=>M là trung điểm của BC

Xét ΔABC có

AM là đường trung tuyến

\(AM=\dfrac{BC}{2}\)

Do đó: ΔABC vuông tại A

b: Ta có: \(\widehat{BMC}=\widehat{BMA}+\widehat{CMA}\)

=>\(\widehat{BMC}=2\left(\widehat{OMA}+\widehat{O'MA}\right)\)

=>\(2\cdot\widehat{OMO'}=180^0\)

=>\(\widehat{OMO'}=90^0\)

Xét ΔOMO' vuông tại M có MA là đường cao

nên \(MA^2=OA\cdot O'A\)

=>\(MA=\sqrt{9\cdot4}=6\left(cm\right)\)

=>\(BC=2\cdot6=12\left(cm\right)\)

c: Gọi I là trung điểm của O'O

ΔOMO' vuông tại M

=>ΔO'MO nội tiếp đường tròn đường kính O'O

=>ΔO'MO nội tiếp (I)

Xét hình thang OBCO' có

M,I lần lượt là trung điểm của BC,O'O

Do đó: MI là đường trung bình của hình thang OBCO'

=>MI//OB//O'C

=>MI\(\perp\)BC

Xét (I) có

IM là bán kính

BC\(\perp\)IM tại M
Do đó:BC là tiếp tuyến của đường tròn đường kính O'O

a: Xét (O) có

MB,MA là tiếp tuyến

nên MB=MA

Xét (O') cos

MA,MC là tiếp tuyến

nên MA=MC=>MA=BC/2

Xét ΔABC có

AM la trung tuyến

AM=BC/2

Do đó; ΔABC vuông tại A

b: Gọi H là trung điểm của OO'

Xét hình thang OBCO' có

M,H lần lượt là trung điểm của BC,OO'

nên MH là đường trung bình

=>MH//BO//CO'

=>MH vuông góc với BC

=>BC là tiếp tuyến của (H)

30 tháng 5 2021

a) Theo tính chất hai tiếp tuyến cắt nhau ta có IA = IB = IC.

Do đó tam giác ABC vuông tại A.

Lại có \(IO_1\perp AB;IO_2\perp AC\) nên tam giác \(IO_1O_2\) vuông tại I.

b) Đầu tiên ta chứng minh kết quả sau: Cho hai đường tròn (D; R), (E; r) tiếp xúc với nhau tại A. Tiếp tuyến chung BC (B thuộc (D), C thuộc (E)). Khi đó \(BC=2\sqrt{Rr}\).

Thật vậy, kẻ EH vuông góc với BD tại H. Ta có \(DH=\left|R-r\right|;DE=R+r\) nên \(BC=EH=\sqrt{DE^2-DH^2}=2\sqrt{Rr}\).

Trở lại bài toán: Giả sử (O; R) tiếp xúc với BC tại M.

Theo kết quả trên ta có \(BM=2\sqrt{R_1R};CM=2\sqrt{RR_2};BC=2\sqrt{R_1R_2}\).

Do \(BM+CM=BC\Rightarrow\sqrt{R_1R}+\sqrt{R_2R}=\sqrt{R_1R_2}\Rightarrow\dfrac{1}{\sqrt{R}}=\dfrac{1}{\sqrt{R_1}}+\dfrac{1}{\sqrt{R_2}}\).

P/s: Hình như bạn nhầm đề

18 tháng 12 2022

loading...

a) Trong (O) có: KB,KM là hai tiếp tuyến cắt nhau tại K.

\(\Rightarrow KB=KM\left(1\right)\)

Trong (I) có: KC,KM là hai tiếp tuyến cắt nhau tại K.

\(\Rightarrow KC=KM\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow KB=KC\)

△BME nội tiếp đường tròn (O) đường kính BE.

⇒△BME vuông tại MM.

\(\Rightarrow\widehat{BME}=90^0\)

b) Ta có: K thuộc đường trung trực của BM (\(KB=KM\))

O thuộc đường trung trực của BM \(\left(OB=OM\right)\)

⇒OK là đường trung trực của BM mà OK cắt BM tại N.

⇒N là trung điểm BM.

- Ta có: K thuộc đường trung trực của CM (\(KC=KM\))

I thuộc đường trung trực của CM \(\left(IC=IM\right)\)

⇒IK là đường trung trực của CM mà IK cắt CM tại P.

⇒P là trung điểm IK và \(CM\perp IK\) tại P.

Xét △BCM có: N là trung điểm BM, P là trung điểm CM.

⇒NP là đường trung bình của △BCM.

⇒NP//CM.

c) *Hạ \(IH\perp OB\) tại H.

Xét tứ giác BCIH có: \(\widehat{HBC}=\widehat{BCI}=\widehat{BHI}=90^0\)

⇒BCIH là hình chữ nhật.

\(\Rightarrow BC=IH;IC=BH=r\)

Xét △ICK vuông tại C có IP là đường cao:

\(\Rightarrow IK.IP=IC^2=r^2\)

Xét △OHI vuông tại H có:

\(HI^2+OH^2=OI^2\)

\(\Rightarrow HI=\sqrt{OI^2-OH^2}=\sqrt{\left(r+R\right)^2-\left(r-R\right)^2}=\sqrt{4Rr}=2\sqrt{Rr}\)

Mà \(BC=HI\Rightarrow BC=2\sqrt{Rr}\left(1'\right)\)

Ta có: \(2\sqrt{IM.IO-IK.IP}=2\sqrt{r\left(r+R\right)-r^2}=2\sqrt{Rr}\left(2'\right)\)

\(\left(1'\right),\left(2'\right)\Rightarrow BC=2\sqrt{IM.IO-IK.IP}\)

 

18 tháng 5 2017

a, Chứng minh được tương tự câu 1a,

=>  O ' M O ^ = 90 0  

Áp dụng hệ thức lượng trong tam giác vuông tính được MA =  R r

b, Chứng minh  S B C O O ' = R + r R r

c, Chứng minh được: ∆BAC:∆OMO’ =>  S B A C S O M O ' = B C O O ' 2

=>  S B A C = S O M O ' . B C 2 O O ' 2 = 4 R r R r R + r

d, Tứ giác OBCO’ là hình thang vuông tại B và C có IM là đường trung bình => IM ⊥ BC = {M}