K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1

M A B O C H D

a/

Xét tg vuông AMO có

\(\sin\widehat{AMO}=\dfrac{OA}{OM}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AMO}=30^o\)

Xét tg vuông AMO và tg vuông BMO có

MO chung; OA=OB=R => tg AMO = tg BMO (Hai tg vuông có cạnh huyền và 1 cạnh góc vuông bằng nhau)

\(\Rightarrow\widehat{AMO}=\widehat{BMO}=30^o\Rightarrow\widehat{AMO}+\widehat{BMO}=\widehat{AMB}=30^o+30^o=60^o\)

Xét tg MAB có

tg AMO = tg BMO (cmt) => MA=MB => tg MAB cân tại M

\(\Rightarrow\widehat{MAB}=\widehat{MBA}\)

Ta có

\(\widehat{MBA}+\widehat{MAB}=180^o-\widehat{AMB}=180^0-60^o=120^o\)

\(\Rightarrow2\widehat{MAB}=120^o\Rightarrow\widehat{MAB}=\widehat{MBA}=120^o:2=60^o\)

\(\Rightarrow\widehat{AMB}=\widehat{MAB}=\widehat{MBA}=60^o\) => tg MAB là tg đều

b/ Gọi H là giao của MO với AB

\(\Rightarrow AB\perp MO;HA=HB\) (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm vuông góc và chia đôi đoạn thẳng nối 2 tiếp điểm)

Ta có

\(S_{AOC}=\dfrac{1}{2}.HA.OC;S_{BOC}=\dfrac{1}{2}.HB.OC\) mà HA=HB (cmt)

\(\Rightarrow S_{AOC}=S_{BOC}\)

\(S_{AOBC}=S_{AOC}+S_{BOC}=2.S_{AOC}=HA.OC\) 

Xét tg vuông AMO có

\(AO^2=OH.MO\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow OH=\dfrac{AO^2}{MO}=\dfrac{R^2}{2R}=\dfrac{R}{2}\)

Ta có

\(MH=MO-OH=2R-\dfrac{R}{2}=\dfrac{3R}{2}\)

Ta có

\(HA^2=MH.OH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow HA=\sqrt{MH.OH}=\sqrt{\dfrac{3R}{2}.\dfrac{R}{2}}=\dfrac{R\sqrt{3}}{2}\)

\(\Rightarrow S_{AOBC}=HA.OC=\dfrac{R\sqrt{3}}{2}.R=\dfrac{R^2\sqrt{3}}{2}\)

c/

Ta có

\(MA\perp OA;OD\perp OA\) => MA//OD

 \(\Rightarrow\widehat{MOD}=\widehat{AMO}=30^o\) (góc so le trong)

Xét tg vuông BMO có

\(\widehat{MOB}=90^o-\widehat{OMB}=90^o-30^o=60^o\)

\(\Rightarrow\widehat{BOD}=\widehat{MOB}-\widehat{MOD}=60^o-30^o=30^o\)

\(\Rightarrow\widehat{MOD}=\widehat{BOD}=30^o\)

Xét tg BOD và tg COD có

\(OB=OC=R\)

OD chung

\(\widehat{BOD}=\widehat{MOD}\) (cmt)

=> tg BOD = tg COD (c.g.c)\(\Rightarrow\widehat{OCD}=\widehat{OBD}=90^o\Rightarrow CD\perp OC\)

=> CD là tiếp tuyến với (O)

 

 

a: Xét ΔOAM vuông tại A có cosAOM=OA/OM=1/2

nên góc AOM=60 độ

=>góc AOB=60 độ

=>sđ cung AB=60 độ

b: Xét (O) có

MA,MC là tiếp tuyến

nên MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc với AC

c: Xét ΔOAB có OA=OB và góc AOB=60 độ

nên ΔOAB đều

mà AH là đườg cao

nên H là trung điểm của OB

=>HO=HB

Vì MO là trung trực của AC

nên MO vuông góc AC tại H và H là trung điểm của AC

HA*HC=HA^2

HO*HM=HA^2

=>HA*HC=HO*HM

=>HA*HC=HB*HM

d: Xét ΔOBC có OB=OC và góc BOC=60 độ

nên ΔBCO đều

=>OB=OC=BC=OA=AB

=>OA=AB=BC=OC

=>OABC là hình thoi

20 tháng 11 2020

a) Tứ giác MAOB có: \(\widehat{OAM}=90^0\left(0A\perp AM\right);\widehat{OBM}=90^0\left(CB\perp BM\right)\)

=> \(\widehat{OAM}+\widehat{OBM}=180^O\)

=> AOBM nội tiếp (tổng 2 góc đối = 180)

Vì I là tâm=> I là trung điểm OM

b) Tính \(MA^2=3R^2\Rightarrow MC.MD=3R^2\)

c) CM: OM là trung trực AB

=> FA=FB

=> tam giác FAB cân tại F

Gọi H là giao điểm AB và OM

Ta có: OA=OB=AI=R => tam giác OAI đều

=> OAI =60O=> FAB=60(cùng phụ AFI)

Vậy tam giác AFB đều

d) Kẻ EK vuông góc với FB tại K. Ta có:

\(S_{B\text{EF}}=\frac{1}{2}.FB.EK\)

Mà \(EK\le BE\)( TAM giác BEK vuông tại K)

Lại có: \(BE\le OA\)(LIÊN hệ đường kính và dây cung)

=> \(S_{B\text{EF}}\le\frac{1}{2}.R\sqrt{3}.2R=R^2\sqrt{3}\)

GTLN của \(S_{B\text{EF}}=R^2\sqrt{3}\). kHI ĐÓ BE là đường kính (I)

Kẻ đường kính BG của (I). Vì B và (I) cố định nên BG cố
 định . Khi đó vị trí cắt tuyến MCD để \(S_{B\text{EF}}\)đạt GTLN là C là giao điểm của FG với đường tron (O)

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)