K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2017

Cho đường tròn tâm O bán kính R và dây AB ko qua O gọi I là trung điểm của AB tiếp tuyến tại Q của đường tròn tâm O cắt đường thẳng OI tại S a/ CmmSB là tiếp tuyến đường tròn tâm O b/cho bik R=5cm AB =8cm Tính độ dài tiếp tuyến SA giai giup minh bai nay duoc ko

23 tháng 9 2019

bạn học đến đg tròn rồi à

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

13 tháng 12 2017

A C B H F G D E J

a) Do AB là tiếp tuyến của đường tròn tại B nên theo đúng định nghĩa, ta có \(OB\perp BA\Rightarrow\widehat{OBA}=90^o\)

Vậy tam giác ABO vuông tại B.

Xét tam giác vuông OAB, áp dụng định lý Pi-ta-go ta có : 

\(AB=\sqrt{OA^2-OB^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)

b) Ta có BC là dây cung, \(OH\perp BC\) 

Tam giác cân OBC có OH là đường cao nên nó cũng là tia phân giác góc COB.

Xét tam giác OCA và OBA có: 

OC = OB ( = R)

OA chung

\(\widehat{COA}=\widehat{BOA}\) (cmt)

\(\Rightarrow\Delta OCA=\Delta OBA\left(c-g-c\right)\)

\(\Rightarrow\widehat{OCA}=\widehat{OBA}=90^o\). Vậy CA là tiếp tuyến của đường tròn (O) tại C.

c) Ta có BC là dây cung, OH vuông góc BC nên theo tính chất đường kính dây cung ta có H là trung điểm BC.

Xét tam giác vuông OBA có BH là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(HB.OA=OB.BA\Rightarrow HB=\frac{R.R\sqrt{3}}{2R}=\frac{R\sqrt{3}}{2}\)

Vậy thì BC = 2HB = \(R\sqrt{3}\)

Do \(\Delta OCA=\Delta OBA\Rightarrow CA=BA\)

Xét tam giác ABC có \(AB=BC=CA=R\sqrt{3}\) nên nó là tam giác đều.

d) Gọi G là trung điểm của CA; J là giao điểm của AE và HD, F' là giao điểm của AE và OB

Ta cần chứng minh F' trùng F.

Dễ thấy HD // OB; HG // AB mà \(AB\perp OB\Rightarrow HD\perp GH\) hay D là tiếp tuyến của đường tròn tại H.

Từ đó ta có : \(\widehat{EHJ}=\widehat{EAJ}\)  

Vậy thì \(\Delta HEJ\sim\Delta AHJ\left(g-g\right)\Rightarrow\frac{EJ}{HJ}=\frac{HJ}{AJ}\Rightarrow HJ^2=EJ.AJ\)

Xét tam giác vuông JDA có DE là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(JD^2=JE.JA\)

Vậy nên HJ = JD.

Áp dụng định lý Ta let trong tam giác OAB ta có:

Do HD // OB nên \(\frac{HJ}{OF'}=\frac{JD}{F'B}\left(=\frac{AJ}{AF'}\right)\)

Mà HJ = JD nên OF' = F'B hay F' là trung điểm OB. Vậy F' trùng F.

Từ đó ta có A, E, F thẳng hàng.

21 tháng 11 2019

dài vậy 😅😅😅

16 tháng 12 2015

tick mik đc 300 điểm hỏi đáp nha,mik sẽ tick lại

20 tháng 11 2017

a/ * dựa vào tính chất đường trung tuyến ứng vs 1 cạnh = 1/2 cạnh ấy thì tam giác đó vuông ta sẽ CM đc tg BCD vuông tại C

    *Có AC=AB(vì đg thẳng là tiếp tuyến của đg tròn vuông góc với bk đi qua tiếp điểm)

=>A cách đều A và B

=>AH vuông góc BC

b/Áp dụng hệ thức lượng trong tam giác vuông ABO có : OH.OA=OB^2=R^2

mk cx đg làm bài này nhg ms chỉ đến đây thôi

24 tháng 11 2017

OABCDHEMNFK

a) Do C thuộc đường tròn mà DB là đường kính nên góc \(\widehat{BCD}\) chắn nửa đường tròn.

\(\Rightarrow\widehat{BCD}=90^o\Rightarrow BC\perp DC\)

Theo tính chất hai tiếp tuyến cắt nhau, ta có OH là phân giác góc BOC. Lại có OBC là tam giác cân tại O nên OH cũng là đường cao.

Vậy \(OH\perp BC\)

b) Xét tam giác vuông OCA có CH là đường cao nên áp dụng hệ thức lượng trong tam giác vuông, ta có:   \(OH.OA=OC^2=R^2\)

Xét tam giác vuông DBA có đường cao BE nên áp dụng hệ thức lượng trong tam giác vuông, ta có: 

\(DE.DA=BD^2=\left(2R\right)^2=4R^2\)

c) Xét tam giác MBA có OH và BE là các đường cao nên N là trực tâm.

Vậy thì \(MN\perp BA\)

Lại có \(BD\perp BA\) nên BD // MN.

d) Ta chứng minh \(OF\perp AD\)

Ta có \(\widehat{BCA}=\widehat{DCO}\) (Cùng phụ với góc OCB)

\(\Rightarrow\widehat{BCA}+90^o=\widehat{DCO}+90^o\Rightarrow\widehat{DCA}=\widehat{FCO}\)  (1)

Ta cũng có tứ giác ABOC nội tiếp nên \(\widehat{CAO}=\widehat{CBO}\)

Mà \(\widehat{CBO}=\widehat{CDF}\) (Cùng phụ với góc CFD)

\(\Rightarrow\widehat{CAO}=\widehat{CDF}\)

Vậy thì \(\Delta CAO\sim\Delta CDF\left(g-g\right)\Rightarrow\frac{CA}{CD}=\frac{CO}{CF}\Rightarrow\frac{CA}{CO}=\frac{CD}{CF}\) (2)

Từ (1) và (2) suy ra \(\Delta DCA\sim\Delta FCO\left(c-g-c\right)\Rightarrow\widehat{ADC}=\widehat{OFC}\)

\(\Rightarrow\widehat{ADF}-\widehat{CDF}=\widehat{CFD}-\widehat{OFD}\)

\(\Rightarrow\widehat{ADF}+\widehat{OFD}=\widehat{CFD}+\widehat{CDF}=90^o\)

\(\Rightarrow\widehat{DKF}=90^o\Rightarrow OF\perp AD\)

Xét tam giác cân DOE có OK là đường cao nên đồng thời là trung tuyến. Vậy K là trung điểm DE.

Xét tam giác vuông ABD có BE là đường cao nên \(\frac{1}{BE^2}=\frac{1}{BA^2}+\frac{1}{BD^2}=\frac{1}{5R^2}+\frac{1}{4R^2}=\frac{9}{20R^2}\)

\(\Rightarrow BE^2=\frac{20R^2}{9}\)

Xét tam giác vuông BED, theo định lý Pi-ta-go ta có:

\(DE^2=BD^2-BE^2=4R^2-\frac{20R^2}{9}=\frac{16R^2}{9}\)

\(\Rightarrow DE=\frac{4R}{3}\)

\(\Rightarrow KE=\frac{2R}{3}\)

24 tháng 11 2017

Cảm ơn ạ