Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A. CM BECD nội tiếp
Tứ giác BECD có \(\widehat{BEC}=90^o=\widehat{BDC}\left(gt\right)\)và cùng nhìn cạnh BC
=> BEDC nội tiếp (đpcm)
B. CM Ax là tiếp tuyến của (O)
Trên nửa mp bờ AB không chứa điểm C, kẻ tiếp tuyến Ay của (O). Ta cần cm Ay trùng với Ax.
Ta có Ax là tiếp tuyến của (O) (cách vẽ)
=> \(\widehat{yAB}=\widehat{ACB}\) ( góc tạo bởi tiếp tuyến & dây cung và góc nội tiếp cùng chắn \(\widebat{AB}\)của đường tròn (O)
mà \(\widehat{ACB}=\widehat{AED}\)( góc ngoài bằng góc trong đối điện của BEDC nội tiếp )
=> \(\widehat{yAB}=\widehat{AED}\)và 2 góc này ở vị trí so le trong
=> Ay//ED
Mà Ax//ED (gt)
=> Ay trùng Ax
=> Ax là tiếp tuyến của (O)
a, Ta có AKB =AEB (vì cùng chắn cung AB của đường tròn ngoại tiếp tam giác AEB)
Mà ABE =AEB (tính chất đối ứng) suy ra AKB= ABE (1)
AKC= AFC (vì cùng chắn cung AC của đường tròn ngoại tiếp tam giác AFC)
ACF= AFC (tính chất đối x
Do sđ M B ⏜ = sđ M A ⏜ = sđ N C ⏜
=> N A S ^ = A N S ^
=> SA = SN => SM = SC
Ta có BOC=120o ;BKC =60o suy ra BOC +BKC =1800 nên tứ giác BOCK nội tiếp đường tròn.
Ta có OB=OC=R suy ra OB= OC=> BKO= CKO hay KO là phân giác góc BKC theo phần (a) KA