K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

Hình tự vẽ na : )

a, - Từ O kẻ đường thẳng vuông góc với AB tại H .

- Xét tam giác OAB có : OA = OB ( = R )

=> Tam giác OAB cân tại O .

Mà OH là đường cao .

=> OH là đường trung trực .

=> \(\left\{{}\begin{matrix}AH=BH=\frac{1}{2}AB=\frac{1}{2}R\sqrt{3}=\frac{R\sqrt{3}}{2}\\\widehat{AOB}=2\widehat{AOH}=2\widehat{BOH}\end{matrix}\right.\)

- Áp dụng tỉ số lượng giác vào tam giác OAH vuông tại H có :

\(Sin\widehat{AOH}=\frac{AH}{AO}=\frac{\frac{R\sqrt{3}}{2}}{R}=\frac{\sqrt{3}}{2}\)

=> \(\widehat{AOH}=60^o\)

=> \(\widehat{AOB}=2.60=120^o\)

Mà Sđ\(\stackrel\frown{AB}=\widehat{AOB}=120^o\)

b, CMTT sử dụng Cos

5 tháng 2 2018

+) Có A,B thuộc đường tròn (O;R) 

=> OA = OB = R Mà AB = R

=> OA = OB = AB => tam giác AOB đều ( định nghĩa tam giác đều)

=> góc AOB = 60 độ ( tính chất tam giác đều)

Trong đường tròn (O;R) có góc AOB là góc ở tâm chắn cung AB nhỏ 

=> số đo cung AB nhỏ = góc AOB = 60 độ (tính chất góc ở tâm )

+) Có B,C thuộc đường tròn (O;R) => OB=OC=R

Có OB^2 + OC^2 = R^2 + R^2= 2*R^2 = BC^2 ( vì BC = R\(\sqrt{2}\) )

=> tam giác BOC vuông ở O ( định lý Py-ta-go đảo )

=> góc BOC = 90 độ

Trong đường tròn (O;R) có góc BOC là góc ở tâm chắn cung BC nhỏ 

=> góc BOC = số đo cung BC nhỏ ( tính chất góc ở tâm) => số đo cung BC nhỏ = 90 độ

+) Vì tia BO nằm giữa 2 tia BA và BC nên B nằm giữa A và C

=> số đo cung AB nhỏ + số đo cung BC nhỏ = số đo cung AC nhỏ

=> số đo cung AC nhỏ = 60 độ + 90 độ = 150 độ

k cho mk nha !!!!!!!!!!!

11 tháng 1 2017

cung nhỏ =90 độ

cung lớn =270 độ

28 tháng 8 2021

Dựng các đường kính MH,KN như hình :  A B D c O N Q M P K N H

Tứ giác ABNK có 4 góc vuông nên :

\(\Rightarrow\)Tứ giác ABNK là hình chữ nhật 

Ta có : 

\(\hept{\begin{cases}ON=OK\\AM=MB\end{cases}}\)

\(\Rightarrow\)MO là đường trung bình 

\(\Rightarrow MO=\frac{BN+AK}{2}=\frac{\frac{1}{2}AB+\frac{1}{2}AD}{2}=\frac{\frac{1}{2}BC}{2}\)

\(=\frac{BC}{2}=\frac{\sqrt{2}}{2}\)

Ta có : 

\(OM\perp AB,OH\perp CD,OK\perp AD,ON\perp BC\)

\(\Rightarrow\)MNHK \(\in\left(O\right)\)nội tiếp hình vuông 

\(\Rightarrow OM=OH=OK=ON=\frac{\sqrt{2}}{2}\)