Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
Xét tứ giác AOBC có:
AO // BC
AC // BO
⇒ Tứ giác AOBC là hình bình hành
Mà OA = OC = R
⇒ Tứ giác AOBC là hình thoi
Bài 2:
ΔOBC cân tại O
mà OK là trung tuyến
nên OK vuông góc BC
Xét tứ giác CIOK có
góc CIO+góc CKO=180 độ
=>CIOK là tứ giác nội tiếp
Bài 3:
Xét tứ giác EAOM có
góc EAO+góc EMO=180 độ
=>EAOM làtứ giác nội tiếp
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)
nên MAOB là tứ giác nội tiếp
b: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
mà OA=OB
nên OM là đường trung trực của AB
\(AM=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(ME=\dfrac{AM^2}{OM}=3,2\left(cm\right)\)
\(AE=\dfrac{AO\cdot AM}{OM}=2,4\left(cm\right)\)
=>AB=4,8(cm)
a) Xét tứ giác MAOB có
\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối
\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét (O) có
\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
\(\widehat{CAM}\) là góc tạo bởi dây cung CA và tiếp tuyến AM
Do đó: \(\widehat{ADC}=\widehat{CAM}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)
hay \(\widehat{MDA}=\widehat{MAC}\)
Xét ΔMDA và ΔMAC có
\(\widehat{MDA}=\widehat{MAC}\)(cmt)
\(\widehat{AMD}\) là góc chung
Do đó: ΔMDA∼ΔMAC(g-g)
⇔\(\dfrac{MD}{MA}=\dfrac{MA}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)
⇔\(MA^2=MC\cdot MD\)(đpcm)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔOAM vuông tại A có AH là đường cao ứng với cạnh huyền OM, ta được:
\(MA^2=MH\cdot MO\)(2)
Từ (1) và (2) suy ra \(MH\cdot MO=MC\cdot MD\)(đpcm)
c) để chứng minh EC là tiếp tuyến:
chứng minh tứ giác OECH nội tiếp thì ta sẽ có góc OHE=OCE=90o(đpcm)
=> cần chứng minh tứ giác OECH nội tiếp:
ta có: DOC=DHC (ccc CD)
xét MHC=MDO (tam giác MCH~MOD)= OCD (vì DO=OC)=OHD (cùng chắn OD) => HA là phân giác CHD
DOC=DHC => 1/2 DOC= 1/2 DHC =COE=CHE
mà COE với CHE cùng chắn cung CE trong tứ giác OHCE nên tứ giác đấy nội tiếp => xong :))))
b) Do AOBC là hình thoi nên AB ⊥ CO
Lại có MA và MB là 2 tiếp tuyến cắt nhau của (O) nên AB ⊥ MO
⇒ M,C,O thẳng hàng.
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
nên MAOB là tứ giác nội tiếp
b: Gọi F là giao điểm của BM và AK
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>ΔMAB cân tại M
Ta có: AH\(\perp\)BK
BF\(\perp\)BK
Do đó: AH//BF
Xét (O) có
ΔBAK nội tiếp
BK là đường kính
Do đó: ΔBAK vuông tại A
=>BA\(\perp\)KF tại A
=>ΔBAF vuông tại A
Ta có: \(\widehat{MAB}+\widehat{MAF}=\widehat{BAF}=90^0\)
\(\widehat{MBA}+\widehat{MFA}=90^0\)(ΔBAF vuông tại A)
mà \(\widehat{MAB}=\widehat{MBA}\)(ΔMAB cân tại M)
nên \(\widehat{MAF}=\widehat{MFA}\)
=>MA=MF
mà MA=MB
nên MB=MF(1)
Xét ΔKBM có HI//BM
nên \(\dfrac{HI}{BM}=\dfrac{KI}{KM}\left(2\right)\)
Xét ΔKMF có AI//MF
nên \(\dfrac{AI}{MF}=\dfrac{KI}{KM}\left(3\right)\)
Từ (1),(2),(3) suy ra HI=AI
=>I là trung điểm của HA