Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )
a) Chứng minh rằng ABOC là tứ giác nội tiếp
b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC
c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC
a, Sử dụng tỉ số lượng giác trong tam giác vuông ∆AMO ta tính được A O M ^ = 60 0
b, Tính được A O B ^ = 120 0 , sđ A B C ⏜ = 120 0
c, Ta có A O C ⏜ = B O C ⏜ => A C ⏜ = B C ⏜
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: OA là tia phân giác của \(\widehat{BOC}\)(Tính chất hai tiếp tuyến cắt nhau)
Suy ra: \(\widehat{BOC}=2\cdot\widehat{BOA}\)
Xét ΔOBA vuông tại B có
\(\cos\widehat{BOA}=\dfrac{BO}{OA}=\dfrac{R}{R\sqrt{2}}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
hay \(\widehat{BOA}=45^0\)
Do đó: \(\widehat{BOC}=2\cdot\widehat{BOA}=2\cdot45^0=90^0\)
hay \(sđ\stackrel\frown{BC}=90^0\)
Vậy: \(sđ\stackrel\frown{BC}=90^0\)
a) Xét \(\Delta\)AOB vuông tại B có
\(\cos\widehat{AOB}=\dfrac{OB}{OA}\)(Tỉ số lượng giác góc nhọn)
\(\Leftrightarrow\cos\widehat{AOB}=\dfrac{R}{2\cdot R}=\dfrac{1}{2}\)
hay \(\widehat{AOB}=60^0\)
Vậy: \(\widehat{AOB}=60^0\)
b) Ta có: ΔOBA vuông tại B(OB⊥BA)
nên \(\widehat{AOB}+\widehat{BAO}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{BAO}=30^0\)
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AO là tia phân giác của \(\widehat{BAC}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{BAO}=\widehat{CAO}\)
hay \(\widehat{CAO}=30^0\)
Ta có: \(\widehat{CAO}+\widehat{MAO}=\widehat{MAC}\)(Vì tia AO nằm giữa hai tia AM,AC)
hay \(\widehat{MAO}=60^0\)
Xét ΔMOA có
\(\widehat{MAO}=60^0\)(cmt)
\(\widehat{MOA}=60^0\)(\(\widehat{AOB}=60^0\))
Do đó: ΔMOA đều(Dấu hiệu nhận biết tam giác đều)
⇒MA=MO(đpcm)
c) Ta có: ΔOBA vuông tại B(OB⊥BA)
mà BI là đường trung tuyến ứng với cạnh huyền OA(I là trung điểm của OA)
nên \(BI=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AI=\dfrac{OA}{2}\)(I là trung điểm của OA)
nên BI=AI(1)
Ta có: ΔOCA vuông tại C(OC⊥CA)
mà CI là đường trung tuyến ứng với cạnh huyền OA(I là trung điểm của OA)
nên \(CI=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(AI=\dfrac{AO}{2}\)(I là trung điểm của OA)
nên CI=AI(2)
Từ (1) và (2) suy ra IA=IB=IC
hay I là giao điểm 3 đường trung trực của ΔABC
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: \(\widehat{BAC}=\widehat{BAO}+\widehat{CAO}\)(tia AO nằm giữa hai tia AB,AC)
hay \(\widehat{BAC}=60^0\)
Xét ΔABC có AB=AC(cmt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)(cmt)
nên ΔABC đều(Dấu hiệu nhận biết tam giác đều)
Xét ΔABC đều có I là giao điểm 3 đường trung trực của tam giác(cmt)
mà trong tam giác đều, giao điểm 3 đường trung trực cũng chính là giao điểm của 3 đường phân giác(Định lí tam giác đều)
nên I là giao điểm của 3 đường phân giác trong ΔBAC
hay I là tâm đường tròn nội tiếp ΔABC(đpcm)
23 0