K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi \(A',B'\)lần lượt là hình chiếu vuông góc của A, B lên MN, H là trung điểm của MN

\(\Rightarrow OH\perp MN\)

Xét hình thang \(AA'B'B\)có OH là đường trung bình nên:

\(OH=\frac{1}{2}\left(AA'+BB'\right)=\frac{R\sqrt{3}}{2}\)

\(MH=\sqrt{OM^2-OH^2}=\sqrt{R^2-\frac{3R^2}{4}}=\frac{R}{2}\)

\(\Rightarrow MN=2MH=R\)

do đó : \(S_{AKB}=\frac{1}{2}.AB.KP=R.KP\le\sqrt{3}R^2\)

Dấu "=" xảy ra <=> MN//AB hay \(\Delta AKB\)đều

b) bạn tự cm đc chứ ??? :))))

b,Tứ giác KMIN nội tiếp trong đường tròn đường kính KI, gọi Q là tâm đường tròn --> Q trung điểm KI ,

Vì MN = R , \(\Delta MNO\) đều

=> góc MAN = 30 độ

Trong tg vuông AKN có \(\widehat{MAN}\) = 300 => góc MKN = 60 độ -

=>góc MQN = 120 độ, vẽ QR vuông góc MN => R trung điểm MN => MR = R/2, trong tg MQR nửa đều

=> QR = MQ/2 và MR = R/2

=> MQ = \(R.\frac{\sqrt{3}}{3}\) --> Bán kính đường tròn = MQ =\(R.\frac{\sqrt{3}}{3}\)
 

29 tháng 11 2018

a) Theo t/c 2 tiếp tuyến cắt nhau, ta có

góc AOC = góc COM 

góc MOD = góc DOB

=> COM +MOD =AOC +BOD = 1/2 AOB = 90o (đpcm)

b) Xét tam giác AOC và tg BDO

Có góc AOC = góc BDO ( cùng phụ BOD)'

      góc ACO = góc BOD ( cùng phụ AOC )

=> tg AOC đồng dạng tg BDO (gg)

=> \(\frac{AC}{AO}=\frac{BO}{BD}\Rightarrow AC.BD=AO.BO=R^2\)