Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')
Cho đường tròn tâm O có đường kính AB R2 . Gọi M là điểm di động trên đường tròn O . Điểm M khác AB, ; dựng đường tròn tâm M tiếp xúc với AB tại H . Từ A và B kẻ hai tiếp tuyến AC và BD với đường tròn tâm M vừa dựng.
a) Chứng minh BM AM , lần lượt là các tia phân giác của các góc ABD và BAC .
b) Chứng minh ba điểm C M D , , nằm trên tiếp tuyến của đường tròn tâm O tại điểm M .
c) Chứng minh AC BD không đổi, từ đó tính tích AC BD. theo CD .
d) Giả sử ngoài AB, trên nửa đường tròn đường kính AB không chứa M có một điểm N cố định. gọi I là trung điểm của MN , kẻ IP vuông góc với MB . Khi M chuyển động thì P chuyển động trên đường cố định nào.
Cần giải câu d
a) góc MAN nội tiếp chắn nửa (O) => góc MAN = 900 hay góc CAD = 900
tam giác CAD vuông tại A có đường cao AB => AM.AC = AB2 = 4R2 không đổi
b) Tam giác OAN có OA = ON = R nên cân tại O => góc OAN = góc ONA hay góc BAD = góc MNA
mà góc BAD = góc ACD (cùng phụ góc BAC) => góc MNA = góc ACD => tứ giác CMND nội tiếp
c) tam giác ACD vuông tại A có AI là trung tuyến => IA = ID = 1/2 CD => tam giác IAD cân tại I => góc IAD = góc IDA
mà góc IDA = góc AMN( tứ giác CMND nội tiếp) => góc IAD = góc AMN mà góc AMD phụ góc MNA => góc IAD phụ góc MNA
=> góc AHN = 900 hay góc AHO = 900 , mà OA = R không đổi => H nằm trên đường tròn đường kính AO
a﴿ góc MAN nội tiếp chắn nửa ﴾O﴿ => góc MAN = 90o hay góc CAD = 90o
tam giác CAD vuông tại A có đường cao AB => AM.AC = AB 2 = 4R 2 không đổi
b﴿ Tam giác OAN có OA = ON = R nên cân tại O => góc OAN = góc ONA hay góc BAD = góc MNA
mà góc BAD = góc ACD ﴾cùng phụ góc BAC﴿ => góc MNA = góc ACD => tứ giác CMND nội tiếp
c﴿ tam giác ACD vuông tại A có AI là trung tuyến => IA = ID = 1/2 CD => tam giác IAD cân tại I => góc IAD = góc IDA
mà góc IDA = góc AMN﴾ tứ giác CMND nội tiếp﴿
=> góc IAD = góc AMN mà góc AMD phụ góc MNA => góc IAD phụ góc MNA
=> góc AHN = 90 0 hay góc AHO = 90 0 , mà OA = R không đổi => H nằm trên đường tròn đường kính AO