Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
OM^2+ON^2=MN^2
OM=ON
=>ΔOMN vuông cân tại O
\(S_{q\left(OMN\right)}=\dfrac{pi\cdot3^2\cdot90}{360}=2.25pi\)
b: \(S_{OMN}=\dfrac{1}{2}\cdot OM\cdot ON=4.5\left(cm^2\right)\)
\(S_{VP\left(MN\right)}=2.25pi-4.5\)(cm2)
Hướng dẫn giải:
∆OAB là tam giác đều có cạnh bằng R = 5,1cm. Áp dụng công thức tính diện tích tam giác đều cạnh a là a2√44 ta có
S∆OBC = SΔOBC=R2√34 (1)
Diện tích hình quạt tròn AOB là:
π.R2.6003600=πR26 (2)
Từ (1) và (2) suy ra diện tích hình viên phân là:
πR26−R2√34=R2(π6−√34)
Thay R = 5,1 ta có Sviên phân ≈ 2,4 (cm2)
Thể tích hình nón : V = (1/3) π . r 2 h ( c m 3 )
Vậy chọn đáp án B
Diện tích xung quanh của ống hình trụ :
S x q = 2πrb ( c m 2 )
Diện tích đáy của ống hình trụ :
S đ á y = π r 2 ( c m 2 )
Vì sơn cả bên ngoài lẫn bên trong ống nên diện tích ống được sơn bao phủ bằng hai lần diện tích xung quanh và hai lần diện tích đáy
S = 2.2 π rb + 2 π r 2 = 2( π r 2 + 2 π rb) ( c m 2 )
Vậy chọn đáp án A
Tam giác OAB là tam giác đều có cạnh R= 5,1 cm.
Công thức tính diện tích tam giác đều cạnh a là:
Do đó, diện tích tam giác đều OAB cạnh OA= R = 5,1 cm là:
Diện tích hình quạt tròn AOB là:
Từ (1) và (2) suy ra diện tích hình viên phân là:
Chọn đáp án B