Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ^CAM = ^EAN (đ.đ)
=> \(\widebat{MC}=\widebat{EN}\)(1)
^MBC ( góc nội tiếp chắn cung MC ) (2)
^EBN ( góc nội tiếp chắn cung EN ) (3)
lại có (1)
Từ (1) ; (2) ; (3) suy ra ^MBC = ^NBE
Ba điểm không thẳng hàng sẽ tạo thành một tam giác. Để đường tròn qua hết 3 điểm đó thì đường tròn đó sẽ là đường tròn ngoại tiếp của tam giác.
Vì 3 điểm chỉ tạo nên 1 tam giác cho nên tam giác cúng chỉ có 1 đường tròn ngoại tiếp duy nhất.
Kết luận: chỉ có 1.
a) Vì \(\hept{\begin{cases}MI\perp AB\\MK\perp AC\end{cases}\Rightarrow\hept{\begin{cases}\widehat{AIM}=90^0\\\widehat{AKM}=90^0\end{cases}}}\)
Xét tứ giác AIMK có \(\widehat{AIM}+\widehat{AKM}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác AIMK
\(\Rightarrow AIMK\)nội tiếp ( dhnb )
b) Vì \(MP\perp BC\Rightarrow\widehat{MPC}=90^0\)
Xét tứ giác MPCK có \(\widehat{MPC}+\widehat{MKC}=180^0\)
Mà 2 góc này ở vị trí đối nhau trong tứ giác MPCK
\(\Rightarrow MPCK\)nội tiếp ( dhnb)
\(\Rightarrow\widehat{MPK}=\widehat{MCK}\)(1)
Vì AC là tiếp tuyến của (O) tại C; BC là dây cung
\(\Rightarrow\widehat{MCK}=\widehat{MBC}\left(=\frac{1}{2}sđ\widebat{MC}\right)\)(2)
Từ (1) và (2) \(\Rightarrow\widehat{MPK}=\widehat{MBC}\)