Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔAHB vuông nên AE.AB = AH2
ΔAHC vuông nên AF.AC = AH2
Suy ra AE.AB = AF.AC
IO = OB – IB => (I) tiếp xúc trong với (O).
OK = OC – KC => (K) tiếp xúc trong với (O)
IK = OH + KH => (I) tiếp xúc ngoài với (K)
- Cách 1:
Ta có: EF = AH ≤ OA (OA có độ dài không đổi)
Do đó EF lớn nhất khi AH = OA
<=> H trùng O hay dây AD đi qua O.
Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.
- Cách 2: EF = AH = AD/2.
Do đó EF lớn nhất khi AD lớn nhất. Khi đó, dây AD là đường kính.
Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.
a/
\(\Delta\)vuông AHB có HE đường cao \(\Rightarrow\)AE.AB=AH2
\(\Delta\)vuông AHC có HF đường cao \(\Rightarrow\)AF.AC=AH2
\(\Rightarrow\)AE.AB=AF.AC
b/ CÁC PHƯƠNG PHÁP CHỨNG MINH TIẾP TUYẾN vd 2
Gọi G là giao điểm của AH và EF
Tứ giác AEHF là hình chữ nhật => AH = EF
Do đó EF là tiếp tuyến của đường tròn (I)
Tương tự, EF là tiếp tuyến của đường tròn (K)