Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 95002
2. 444240
3.262440000
4.1494093039
6.3315710
7.3673076923/100000000
9.2111336 cm2
10. x - 18,6 = 98,2 + 6,8
x - 18,6 = 105
x = 105 + 18,6
x = 123,6
Vậy x = 123,6
Chọn phương án (C).
Diện tích của nửa hình tròn có đường kính \(4R\) bằng \(2\pi R^2\)
a, Xét tam giác MON có : OM = ON = R
=> tam giác MON cân tại O, do OI vuông MN hay OI là đường cao
đồng thời là đường phân giác => ^MOI = ^ION
Vì BN là tiếp tuyến đường tròn (O) với N là tiếp điểm
=> ON vuông BN hay ^ONB = 900
Xét tam giác IOM và tam giác NOB có :
^IOM = ^NOB ( cmt )
^OIM = ^ONB = 900
Vậy tam giác IOM ~ tam giác NOB ( g.g )
=> \(\frac{IO}{NO}=\frac{IM}{NB}\Rightarrow IO.NB=IM.NO\)
ý b sáng mai mình gửi nhé ;))
sửa hộ mình chỗ này nhé : ^OIM = ^ONB = 900
b, Vì I là trung điểm điểm OA => \(IO=IA=\frac{OA}{2}=\frac{R}{2}\)
Theo định lí Pytago tam giác OIM ta được :
\(MI=\sqrt{OM^2-OI^2}=\sqrt{R^2-\frac{R^2}{4}}=\sqrt{\frac{3R^2}{4}}=\frac{\sqrt{3}R}{2}\)
Vì BM là tiếp tuyến đường tròn (O) và M là tiếp điểm
=> OM vuông MB hay ^OMB = 900 => tam giác OMB vuông tại M
Xét tam giác OMB vuông tại M, đường cao MI
Áp dụng hệ thức : \(\frac{1}{OM^2}+\frac{1}{MB^2}=\frac{1}{MI^2}\Rightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{1}{\frac{3R^2}{4}}\)
\(\Leftrightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{4}{3R^2}\Leftrightarrow\frac{1}{MB^2}=\frac{4}{3R^2}-\frac{1}{R^2}=\frac{1}{3R^2}\Rightarrow MB=\sqrt{3}R\)
CM : tam giác OMB = tam giác ONB ( ch - gn )
Ta có : \(S_{OMNB}=S_{OMB}+S_{ONB}=2S_{OMB}=\frac{2.1}{2}.OM.MB\)
\(=R.\sqrt{3}R=\sqrt{3}R^2\)