Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(góc nội tiếp chắn nửa đường tròn)
Suy ra: AM ⊥ A'B
tam giác AA’B vuông tại A
Theo hệ thức lượng giác trong tam giác vuông ta có;
A ' A 2 = A’M.A’B
a, ta có OC và OD là 2 tia phân giác của 2 góc kề bù
==> Góc COD=180/2=90độ
b, theo tính chất tiếp tuyến ta có MD=BD
Mặt khác OB=OM [cùng bằng bán kính]
do đó OD là đường trung trực của MB[Tính chất đường trung trực]
c, tương tự câu b ta có OC là đường trung trực của AM ==> AM vuông góc với OC
Mà OD vuông góc với OC[vì tam giác ODC vuông tại O]
Do đó AM // OD[cùng vuông góc với OC]
a, Dễ thấy A M B ^ = 90 0 hay E M F ^ = 90 0 tiếp tuyến CM,CA
=> OC ⊥ AM => O E M ^ = 90 0 Tương tự => O F M ^ = 90 0
Chứng minh được ∆CAO = ∆CMO => A O C ^ = M O C ^
=> OC là tia phân giác của A M O ^
Tương tự OD là tia phân giác của B O M ^ suy ra OC ⊥ OD <=> C O D ^
b, Do ∆AOM cân tại O nên OE là đường phân giác đồng thời là đường cao
=> O E M ^ = 90 0 chứng minh tương tự O F M ^ = 90 0
Vậy MEOF là hình chữ nhật
c, Gọi I là trung điểm CD thì I là tâm đường tròn đường kính CD và IO=IC=ID. Có ABDC là hình thang vuông tại A và B nên IO//AC//BD và IO vuông góc với AB. Do đó AB là tiếp tuyến của đường tròn đường kính CD.