K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2017

Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

Dự đoán: Quỹ tích điểm I là hai cung Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 là các cung chứa góc 26º34’ dựng trên đoạn AB.

Chứng minh:

+ Phần thuận :

Theo phần a): Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 không đổi

I nằm trên cung chứa góc 26º34’ dựng trên đoạn AB cố định

Kẻ tiếp tuyến của đường tròn tại A cắt hai cung chứa góc 26º34’ dựng trên đoạn AB tại C và D

Khi M di động trên đường tròn đường kính AB cố định thì I di động trên cung BC và BD

⇒ I nằm trên hai cung Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 chứa góc 26º34’ dựng trên đoạn AB cố định.

+ Phần đảo:

Lấy điểm I bất kỳ nằm trên hai cung Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 nhìn AB dưới 1 góc 26º34’.

AI cắt đường tròn đường kính AB tại M.

Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ BM /MI = tan I = 1/2.

Kết luận: Quỹ tích điểm I là hai cung Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 nhìn AB dưới góc 26º34’ (hình vẽ).

11 tháng 4 2017

a) Vì = 90o (góc nội tiếp chắn nửa đường tròn) suy ra trong tam giác vuông MIB có tg = = => = 26o34’

Vậy không đổi.

b) Phần thuận:

Khi điểm M chuyển động trên đường tròn đường kính AB thì điểm I cũng chuyển động, nhưng luôn nhìn đoạn thẳng AB cố định dưới góc 26o34’, vậy điểm I thuộc hai cung chứa góc 26o34’ dựng trên đoạn thẳng AB (hai cung )

Phần đảo:

Lấy điểm I' bất kì thuộc hoặc , I'A cắt đường tròn đường kính AB tại M'.

Tam giác vuông BMT, có tg = = tg26o34’

Kết luận: Quỹ tích điểm I là hai cung



11 tháng 4 2017

a) Vì \(\widehat{BMA}\)= 90o (góc nội tiếp chắn nửa đường tròn) suy ra trong tam giác vuông MIB có tg\(\widehat{AIB}\) = \(\dfrac{MB}{MI}\) = \(\dfrac{1}{2}\) =>\(\widehat{AIB}\) = 26o34’

Vậy \(\widehat{AIB}\) không đổi.

b) Phần thuận:

Khi điểm M chuyển động trên đường tròn đường kính AB thì điểm I cũng chuyển động, nhưng luôn nhìn đoạn thẳng AB cố định dưới góc 26o34’, vậy điểm I thuộc hai cung chứa góc 26o34’ dựng trên đoạn thẳng AB (hai cung )

Phần đảo:

Lấy điểm I' bất kì thuộc hoặc , I'A cắt đường tròn đường kính AB tại M'.

Tam giác vuông BMT, có tg\(\widehat{I'}\) = \(\dfrac{M'B}{M'I'}\) = tg26o34’

Kết luận: Quỹ tích điểm I là hai cung


1 tháng 12 2019

Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) M ∈ đường tròn đường kính AB

Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

ΔBMI vuông tại M

⇒ tan I = MB / MI = 1/2

Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) Dự đoán: Quỹ tích điểm I là hai cung Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 là các cung chứa góc 26º34’ dựng trên đoạn AB.

Chứng minh:

+ Phần thuận :

Theo phần a): Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 không đổi

I nằm trên cung chứa góc 26º34’ dựng trên đoạn AB cố định

Kẻ tiếp tuyến của đường tròn tại A cắt hai cung chứa góc 26º34’ dựng trên đoạn AB tại C và D

Khi M di động trên đường tròn đường kính AB cố định thì I di động trên cung BC và BD

⇒ I nằm trên hai cung Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 chứa góc 26º34’ dựng trên đoạn AB cố định.

+ Phần đảo:

Lấy điểm I bất kỳ nằm trên hai cung Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 nhìn AB dưới 1 góc 26º34’.

AI cắt đường tròn đường kính AB tại M.

Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ BM /MI = tan I = 1/2.

Kết luận: Quỹ tích điểm I là hai cung Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 nhìn AB dưới góc 26º34’ (hình vẽ).

Kiến thức áp dụng

+ Trong một tam giác vuông, tan α = cạnh đối / cạnh huyền.

Khi điểm M chuyển động trên đường tròn đường kính AB thì điểm I cũng chuyển động, nhưng luôn nhìn đoạn thẳng AB cố định dưới góc 26o34’, vậy điểm I thuộc hai cung chứa góc 26o34’ dựng trên đoạn thẳng AB (hai cung  và )

Phần đảo:

Lấy điểm I' bất kì thuộc  hoặc , I'A cắt đường tròn đường kính AB tại M'.

Tam giác vuông BMT, có tg =  = tg26o34’

Kết luận: Quỹ tích điểm I là hai cung  và 

Dự đoán: Quỹ tích điểm I là hai cung Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 là các cung chứa góc 26º34’ dựng trên đoạn AB.

Chứng minh:

+ Phần thuận :

Theo phần a): Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 không đổi

I nằm trên cung chứa góc 26º34’ dựng trên đoạn AB cố định

Kẻ tiếp tuyến của đường tròn tại A cắt hai cung chứa góc 26º34’ dựng trên đoạn AB tại C và D

Khi M di động trên đường tròn đường kính AB cố định thì I di động trên cung BC và BD

⇒ I nằm trên hai cung Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 chứa góc 26º34’ dựng trên đoạn AB cố định.

+ Phần đảo:

Lấy điểm I bất kỳ nằm trên hai cung Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 nhìn AB dưới 1 góc 26º34’.

AI cắt đường tròn đường kính AB tại M.

Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ BM /MI = tan I = 1/2.

Kết luận: Quỹ tích điểm I là hai cung Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9 nhìn AB dưới góc 26º34’ (hình vẽ).

13 tháng 1 2019

Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

M ∈ đường tròn đường kính AB

Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

ΔBMI vuông tại M

⇒ tan I = MB / MI = 1/2

Giải bài 50 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

22 tháng 8 2021

M A B O C

a, có AM = 2AC  mà để AM lớn nhất

<=> AC lớn nhất

có AC là dây cung của đường tròn (O) đk AB

=> AC =< AB

dấu = xảy ra khi C trùng B

b, AM = 2R.căn 3 mà AM = 2AC

<=> 2AC = 2R.căn 3

<=> AC = R.căn 3

xét tam giác ABC vuông tại C => AC^2 + CB^2 = AB^2 

Mà BA = 2R

=> (R.căn 3)^2 + BC^2 = (2R)^2

<=> 3R^2 + BC^2 = 4R^2

<=> BC^2 = R^2

<=> BC = R

vậy lấy điểm C trên (O) sao cho BC = R để AM = 2R.căn 3

c,  xét tam giác BAM có BC là đường trung tuyến đồng thời là đường cao

=> tam giác BAM cân tại B

=> BA = BM mà AB không đổi

=> BM không đổi

=> khi C di động trên (O) thì M di động trên đường tròn (B) cố định

27 tháng 6 2017

*chứng minh thuận

Trong đường tròn đường kính AB ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Khi C chuyển động trên đường tròn đường kính AB cố định thì D chuyển động trên cung chứa góc 135 ° dựng trên đoạn thẳng AB cố định

-Khi dây AC có độ dài lớn nhất bằng đường kính đường tròn thì C trùng với B nên E cũng trùng với B.Vậy B là điểm thuộc quỹ tích

- Khi dây AC có độ dài nhỏ nhất bằng 0 thì C trùng với A.khi đó E trùng với A nên A là một điểm của quỹ tích

Vậy E chuyển động trên cung chứa góc  135 °  vẽ trên đoạn AB nằm trên nửa mặt phẳng bờ AB chứa điểm C

*chứng minh đảo:

Lấy điểm E’ bất kì trên cung chứa góc  135 °  , nối AE’ cắt đường tròn đường kính AB tại C’.Nối BE’, BC’

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Quỹ tích điểm các điểm E khi C chuyển động trên nửa đường tròn đường kính AB là cung chứa góc  135 °  vẽ trên đoạn AB, trong nửa mặt phẳng bờ AB có chứa điểm C