K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

Chọn D

Tổng khoảng cách từ O đến hai tiếp tuyến bằng

9 tháng 6 2018

a) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua O.

Dùng biểu thức tọa độ của phép đối xứng qua gốc tọa độ ta có :

M′ = (2; −3), phương trình của d′: 3x – y – 9 = 0, phương trình của đường tròn (C′): x 2   +   y 2   −   2 x   +   6 y   +   6   =   0 .

b) Gọi M', d' và (C') theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua I .

Vì I là trung điểm của MM' nên M′ = (4;1)

Vì d' song song với d nên d' có phương trình 3x – y + C = 0.

Lấy một điểm trên d, chẳng hạn N(0; 9).

Khi đó ảnh của N qua phép đối xứng qua tâm I là N′(2; −5).

Vì N' thuộc d nên ta có 3.2 − (−5) + C = 0. Từ đó suy ra C = -11.

Vậy phương trình của d' là 3x – y – 11 = 0.

Để tìm (C'), trước hết ta để ý rằng (C) là đường tròn tâm J(−1; 3),

bán kính bằng 2. Ảnh của J qua phép đối xứng qua tâm I là J′(3; 1).

Do đó (C') là đường tròn tâm J' bán kính bằng 2. Phương trình của (C') là x   −   3 2   +   y   −   1 2   =   4 .

NV
4 tháng 1 2021

Đường tròn có pt:

\(\left(x-1\right)^2+\left(y-1\right)^2=8\)

Tâm \(I\left(1;1\right)\) và \(R=2\sqrt{2}\)

Gọi \(I_1\) là ảnh của I qua phép quay 

\(\Rightarrow\left\{{}\begin{matrix}x_{I1}=1.cos\left(-45^0\right)-1sin\left(-45^0\right)=\sqrt{2}\\y_{I_1}=1.sin\left(-45^0\right)+1.cos\left(-45^0\right)=0\end{matrix}\right.\)

\(\Rightarrow I_1\left(\sqrt{2};0\right)\)

Gọi \(I_2\) là ảnh của \(I_1\) qua phép vị tự:

\(\Rightarrow\left\{{}\begin{matrix}x_{I_2}=-\sqrt{2}.\sqrt{2}=-2\\y_{I_2}=-\sqrt{2}.0=0\end{matrix}\right.\) \(\Rightarrow I_2\left(-2;0\right)\)

\(R_2=\left|-\sqrt{2}\right|.2\sqrt{2}=4\)

Vậy pt đường tròn ảnh có dạng:

\(\left(x+2\right)^2+y^2=16\)

NV
10 tháng 1 2021

Ý tưởng thế này: tọa độ A, B thỏa mãn:

\(\left\{{}\begin{matrix}6x^2+6ax=6\\y=2x^3+3ax^2+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1-ax\\y=2x^3+3ax^2+b\end{matrix}\right.\)

\(\Rightarrow y=2x\left(1-ax\right)+3a\left(1-ax\right)+b\)

\(\Rightarrow y=-2ax^2+2x-3a^2x+3a+b\)

\(\Rightarrow y=-2a\left(1-ax\right)+2x-3a^2x+3a+b\)

\(\Rightarrow y=\left(2-a^2\right)x+a+b\)

\(\Rightarrow\left(2-a^2\right)x-y+a+b=0\)

Đây chính là pt AB theo a;b

Từ khoảng cách \(\Rightarrow\dfrac{\left|a+b\right|}{\sqrt{\left(2-a^2\right)^2+1}}=1\Leftrightarrow\left(a+b\right)^2=\left(2-a^2\right)^2+1\)

\(\Leftrightarrow\left(a+b\right)^2=a^4-4a^2+5\)

\(\Leftrightarrow2a^2+\left(a+b\right)^2=a^4-2a^2+5=\left(a^2-1\right)^2+4\ge4\)

18 tháng 5 2021

d:x+y-2=0 A B C I E(3;1) D(-2;1) P(2;1)

Ta dễ có tứ giác ABDE nội tiếp đường tròn đường kính AB => ^CDE = ^BAE

Lại có ^BAE = ^CAD (= 900 - ^ACB), suy ra ^CDE = ^CAD = 900 - ^ACD => DE vuông góc AC

Thấy D,E,P cùng có tung độ bằng 1 => D,E,P thẳng hàng, vì P thuộc AC nên DE vuông góc với AC tại P

Đường thẳng AC: đi qua P(2;1), VTPT \(\overrightarrow{DE}=\left(5;0\right)\) \(\Rightarrow AC:x-2=0\)

Xét hệ: \(\hept{\begin{cases}x-2=0\\x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\Rightarrow A\left(2;0\right)\)

Đường thẳng BC: đi qua \(D\left(-2;1\right)\),VTPT \(\overrightarrow{DA}=\left(4;-1\right)\Rightarrow BC:4x-y+9=0\)

Xét hệ: \(\hept{\begin{cases}x-2=0\\4x-y+9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=17\end{cases}\Rightarrow C\left(2;17\right)}\)

Đường thẳng BE: đi qua \(E\left(3;1\right)\), VTPT \(\overrightarrow{AE}=\left(1;1\right)\Rightarrow BE:x+y-4=0\)

Xét hệ: \(\hept{\begin{cases}4x-y+9=0\\x+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=5\end{cases}}\Rightarrow B\left(-1;5\right)\)

Vậy \(A\left(2;0\right),B\left(-1;5\right),C\left(2;17\right)\).