K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

Đáp án B

Đường tròn (C) :

x2+ y2 – 2x + 8y – 23= 9 có tâm I( 1 ; -4) bán kính R= 7.

Ta có:  

và IM= 10 > R.

=> điểm  M nằm ngoài đường tròn.

Khi đó từ M ta  sẽ kẻ được 2 tiếp tuyến với đường tròn. Và độ dài đoạn tiếp tuyến xuất phát từ M  là:

11 tháng 4 2021

Bán kính đường tròn: \(R=\sqrt{10}\)

\(O=\left(2;0\right)\) là tâm đường tròn

\(\Rightarrow OM=\sqrt{\left(1-2\right)^2+\left(-2-0\right)^2}=\sqrt{5}< R=\sqrt{10}\)

\(\Rightarrow M\) nằm trong đường tròn

Kết luận: Số tiếp tuyến kẻ được từ M đến đường tròn (C) là 0.

(C): x^2+y^2+4x-2y-4=0

=>(x+2)^2+(y-1)^2=9

=>I(-2;1); R=3

M thuộc d nên M(a;1-a)

M nằm ngoài (C) nên IM>R

=>IM^2>9

=>2a^2+4a-5>0

MA^2=MB^2=IM^2-IA^2=(a+2)^2+(-a)^2-9=2a^2+4a-5

=>x^2+y^2-2ax+2(a-1)y-6a+6=0(1)

A,B thuộc (C)

=>Tọa độ A,B thỏa mãn phương trình:

 x^2+y^2+4x-2y-4=0(2)

(1)-(2)=(a+2)x-ay+3a-5=0(3)

Tọa độ A,B thỏa mãn (3) nên (3) chính là phương trình đường thẳng AB

(E) tiếp xúc AB nên (E): R1=d(E,AB)

Chu vi của (E) lớn nhất khi R1 lớn nhất

=>d(E;AB) lớn nhất

Gọi H là hình chiếu vuông góc của E lên AB

=>d(E,Δ)=EH<=EK=căn 10/2

Dấu = xảy ra khi H trùng K

=>AB vuông góc EK

vecto EK=(-1/2;3/2), AB có VTCP là (a;a+2)

AB vuông góc EK

=>-1/2a+3/2(a+2)=0

=>a=-3

=>M(-3;4)

1 tháng 5 2023

a.

Ta có: \(\left\{{}\begin{matrix}-4a=-2\\8b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-4\end{matrix}\right.\) \(\Rightarrow I\left(2;-4\right)\)

\(R=\sqrt{2^2+\left(-4\right)^2+5}=5\)

b.

PTTT: \(\left(C\right):\left(a-x_0\right)\left(x-x_0\right)+\left(b-y_0\right)\left(y-y_0\right)=0\)

\(\Leftrightarrow\left(2+1\right)\left(x+1\right)+\left(-4-0\right)\left(y-0\right)=0\)

\(\Leftrightarrow\left(C\right):3x-4y=-3\)

c.

Ta có: \(\Delta\perp d\Rightarrow\Delta:4x+3y+c=0\)

\(d\left(I,\Delta\right):\dfrac{\left|4\cdot2-3\cdot4+c\right|}{\sqrt{4^2+3^2}}=5\)

\(\Leftrightarrow\left|c-4\right|=25\) \(\Leftrightarrow\left[{}\begin{matrix}c=29\\c=-21\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\Delta:4x+3y+29=0\\\Delta:4x+3y-21=0\end{matrix}\right.\)

30 tháng 7 2017

Đáp án B

22 tháng 7 2017

Đáp án A

10 tháng 4 2018

a) x2 + y2 – 4x + 8y – 5 = 0

⇔ (x2 – 4x + 4) + (y2 + 8y + 16) = 25

⇔ (x – 2)2 + (y + 4)2 = 25.

Vậy (C) có tâm I(2 ; –4), bán kính R = 5.

b) Thay tọa độ điểm A vào phương trình đường tròn ta thấy:

(–1 – 2)2 + (0 + 4)2 = 32 + 4= 52= R2

⇒ A thuộc đường tròn (C)

⇒ tiếp tuyến (d’) cần tìm tiếp xúc với (C) tại A

⇒ (d’) là đường thẳng đi qua A và vuông góc với IA

⇒ (d’) nhận Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt và đi qua A(–1; 0)

⇒ phương trình (d’): 3(x + 1) – 4(y - 0)= 0 hay 3x – 4y + 3 = 0.

c) Gọi tiếp tuyến vuông góc với (d) : 3x – 4y + 5 = 0 cần tìm là (Δ).

(d) có Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt; 1 VTCP là ud(4; 3)

(Δ) ⊥ (d) ⇒ (Δ) nhận Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt

⇒ (Δ): 4x + 3y + c = 0.

(C) tiếp xúc với (Δ) ⇒ d(I; Δ) = R

Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10

Vậy (Δ) : 4x + 3y + 29 = 0 hoặc 4x + 3y – 21 = 0.

19 tháng 1 2017

Đường tròn (C): x 2 + y 2 − 6 x + 8 y − 24 = 0  có tâm I(3; - 4) và bán kính R = 7.

Khoảng cách d I ,   ∆ = 4.3 + 3. − 4 − m 5 = m 5 .

Để đường thẳng cắt đường tròn theo dây cung có độ dài bằng 10 ta có:

10    = 2     R 2 −    d ( I ;    Δ ) 2 ⇔ 5 =    49 −     m 2 25 ⇔ 25 = 49 −    m 2 25     ⇔ m 2 25    = 24 ⇔ m 2 =  ​ 600 ⇔ m =    ± 10 6

ĐÁP ÁN B

4 tháng 7 2019

Đáp án: A

Ta có:

(C): x 2  + y 2  + 2x + 2y - 2 = 0 ⇔ (x + 1 ) 2  + (y + 1 ) 2  = 4 ⇒ I(-1;-1)

Phương trình tiếp tuyến của đường tròn tại M là đường thẳng đi qua M và nhận vector IM = (0;2) làm vecto pháp tuyến: 0.(x + 1) + 2.(y - 1) = 0 ⇔ y - 1 = 0

NV
30 tháng 4 2021

Đường tròn (C) tâm I(1;-3) bán kính \(R=4\)

Tiếp tuyến d vuông góc với 6x+8y-3=0 nên nhận \(\left(4;-3\right)\) là 1 vtpt

Tiếp tuyến d có dạng: \(4x-3y+c=0\)

\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|4.1-3.\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)

\(\Leftrightarrow\left|c+13\right|=20\Rightarrow\left[{}\begin{matrix}c=7\left(loại\right)\\c=-33\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-3\\c=-33\end{matrix}\right.\)