Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M ∈ Δ => M( 1 + 2m ; m)
Do AM // d nên \(\overrightarrow{n_{AM}}=\overrightarrow{n_d}=\left(4;-3\right)\)
Phương trình AM có dạng: 4(x -1 - 2m) - 3(y - m) = 0
Mà A ∈ AM nên: 4(-1 -1 - 2m) - 3(3 - m) = 0
⇔ m= \(\frac{-17}{5}\) => M(\(\frac{-29}{5};\frac{-17}{5}\))
(d')//(d)
=>(d'): 4x-3y+c=0
(C): x^2-4x+4+y^2+6y+9-16=0
=>(x-2)^2+(y+3)^2=16
=>R=4; I(2;-3)
Theo đề, ta có: d(I;(d'))=4
=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)
=>|c+17|=4*5=20
=>c=3 hoặc c=-37
Mình làm 1 ý câu a, các ý khác hoàn toàn giống hệt:
Do A là giao điểm của AB và AC nên tọa độ A là nghiệm:
\(\left\{{}\begin{matrix}2x-3y-1=0\\5x-2y+1=0\end{matrix}\right.\) \(\Rightarrow A\left(-\frac{5}{11};-\frac{7}{11}\right)\)
Gọi AH là đường cao hạ từ A xuống BC, đường thẳng BC nhận \(\left(1;3\right)\) là 1 vtpt, do \(AH\perp BC\Rightarrow\) AH nhận \(\left(3;-1\right)\) là 1 vtpt
Phương trình AH:
\(3\left(x+\frac{5}{11}\right)-1\left(y+\frac{7}{11}\right)=0\Leftrightarrow3x-y+\frac{8}{11}=0\)
(C): x^2+y^2-4x+6y-12=0
=>O(2;-3)
R=căn 2^2+(-3)^2+12=5
Gọi đường cần tìm là (d'): x+y+c=0
Gọi A,B lần lượt là giao điểm của (d') và (C)
ΔOHB vuông tại H
\(d\left(O;AB\right)=\dfrac{\left|2+\left(-3\right)+c\right|}{\sqrt{2}}=HO\)
\(=\sqrt{OB^2-BH^2}=3\)
=>\(\left[{}\begin{matrix}c=3\sqrt{2}+1\\c=-3\sqrt{2}+1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x+y-3\sqrt{2}+1=0\\x+y+3\sqrt{2}+1=0\end{matrix}\right.\)
Áp dụng công thức cos =
ta có cos =
=> cos = = = => = 450
Đáp án B
Đường tròn (C) có tâm I( 1; -3) và R= 2
có phương trình 4x- 3y+ m= 0.
Vẽ
Vậy: